油气勘探

印度东部盆地群地质特征、油气成藏与深水区勘探潜力

  • 秦雁群 ,
  • 张光亚 ,
  • 计智峰 ,
  • 李志 ,
  • 吴义平 ,
  • 王兴龙 ,
  • 梁旭
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 中海油研究总院,北京 100028
秦雁群(1982-),男,安徽巢湖人,博士,中国石油勘探开发研究院工程师,从事深水沉积学和海外油气勘探与规划研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院全球油气资源与勘探规划研究所,邮政编码:100083。E-mail:yqqin@petrochina.com.cn

收稿日期: 2017-03-29

  修回日期: 2017-08-16

  网络出版日期: 2017-09-18

基金资助

国家油气重大专项(2016ZX05029005); 中国石油天然气集团公司科技项目(2016D-43)

Geological features, hydrocarbon accumulation and deep water potential of East Indian basins

  • QIN Yanqun ,
  • ZHANG Guangya ,
  • JI Zhifeng ,
  • LI Zhi ,
  • WU Yiping ,
  • WANG Xinglong ,
  • LIANG Xu
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    2. CNOOC Research Institute, Beijing 100028, China

Received date: 2017-03-29

  Revised date: 2017-08-16

  Online published: 2017-09-18

摘要

基于印度东部盆地群区域构造沉积演化、地层充填和油气地质特征,建立深水扇体发育和成藏模式,分析深水区勘探潜力。印度东部被动大陆边缘形成源自东冈瓦纳古大陆裂解,经历了克拉通内裂谷(P1—T)、东冈瓦纳裂谷(J1—K1)、裂后热沉降(K2)和被动大陆边缘(K3—N)4个演化阶段,发育裂后热沉降期末、被动大陆边缘I期末和Ⅱ期末3个明显不整合,形成裂谷期和被动大陆边缘Ⅰ期、Ⅱ期、Ⅲ期4套构造层,被动大陆边缘阶段沉积是盆地群地层主体,形成近岸叠覆型扇复合体、与三角洲有关的断裂坡折部位低位扇和前缘浊积扇两类富油气沉积体系。盆地内发育下二叠统、下白垩统、上白垩统和古近系4套证实的烃源岩,平面分布差异大;发育裂谷期砂岩和碳酸盐岩、裂后热沉降和被动大陆边缘时期三角洲和深水重力流砂岩等多种类型储集层,总体为中孔、低渗条件;油气盖层多、厚度变化大,漂移期多为区域封盖,其他时期则以局部封盖为主;形成上白垩统砂岩、古近系砂岩、新近系砂岩等8个成藏组合。被动大陆边缘阶段深水区油气勘探在平面上应以克里希那和高韦里河流三角洲地区为主,纵向上则以被动大陆边缘阶段与构造相关三角洲砂体、断裂坡折处低位扇、85°E海脊附近和高韦里盆地南部海域近岸扇复合体为重点。图9表1参40

本文引用格式

秦雁群 , 张光亚 , 计智峰 , 李志 , 吴义平 , 王兴龙 , 梁旭 . 印度东部盆地群地质特征、油气成藏与深水区勘探潜力[J]. 石油勘探与开发, 2017 , 44(5) : 691 -703 . DOI: 10.11698/PED.2017.05.04

Abstract

Based on the tectonic evolution, sedimentary filling and hydrocarbon geological characteristics, this paper establishes a variety of deep water fan models and accumulation patterns and analyzes exploration potential of deep water area in East Indian basins. Due to the breakup of East Gondwana, the passive continental margins of East India are evolved. The basins in these margins experienced four evolution stages, which include intracratonic rift (P1-T), East Gondwana rift (J1-K1), post-rifted thermal subsidence (K2), and passive continental margin (K3-N). There are three obvious unconformities which were formed in the end stages of post-rift thermal subsidence and first and second phases of passive continental margin. Four sets of structural layers were formed, rift stage, and the first, second and third stages of passive continental marginal structural formation. The main deposition of these basins is the sediments evolved during the passive continental margin stage. Two prolific fan systems were developed: superposition fans are complicated in near shore and delta; low fans are located at fault slope-break while turbidity fans are located in front of delta. Four sets of proven source rocks were developed, the Lower Permian, Lower Cretaceous, Upper Cretaceous and Paleogene. There are many middle porosity reservoirs and low permeability reservoirs, such as sandstone and local carbonate in rift period, sandstone of delta and deep water gravity flow in the rifted thermal subsidence and passive continental margin stages. Many seals were developed in the basins, regional seals in drifted stage and local seals in other stages, and the seals thickness change are enormous. There are eight plays in these basins which include Upper Cretaceous sandstone, Paleogene sandstone, Neogene sandstone, etc. The hydrocarbon exploration of deep water area during the passive continental margin stage should focus on Krishna and Cauvery river delta on the plane, and delta sandstone related to fault, low fan located at fault slope-break and near shore fan complex in vicinity of 85°E ridge and south offshore of Cauvery basin vertically.

参考文献

[1] IHS Energy. EDIN[EB/OL]. (2016-12-20)[2017-02-20]. http://www. ihsenergy.com.
[2] TELLUS. Tellus data[EB/OL]. (2016-12-25)[2017-02-20]. http:// www.fugro-robertson.com/products/tellusFRL.
[3] WEIMER P, SLATT R. Introduction to the petroleum geology of deepwater settings[M]. Tulsa: AAPG, 2007.
[4] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25.
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
[5] JOAN F. Context, challenges, and future of deep-water plays: An overview[C]//ROSEN N, WEIMER P, ANJOS S, et al. New understanding of the petroleum systems of continental margins of the world. Houston, Texas: SEPM, 2012: 181-220.
[6] KATZ B, MELLO M. Petroleum systems of South Atlantic marginal basins: An overview[C]//MELLO M, KATZ B. Petroleum systems of South Atlantic margins. Tulsa: AAPG, 2000: 1-13.
[7] CERALDI T, HODGKINSON R, BACKE G. The petroleum geology of the West Africa margin: An introduction[C]//SABATO T, HODGKINSON R, BACKE G. Petroleum geoscience of the West Africa margin. London: Geological Society of London, 2017: 1-6.
[8] RIDD M, RACEY A. Introduction to the petroleum geology of Myanmar[C]//RACEY A, RIDD M. Petroleum geology of Myanmar. London: Geological Society of London, 2015: 1-6.
[9] 客伟利, 童晓光, 温志新, 等. 孟加拉湾西侧盆地群油气地质特征及勘探潜力[J]. 西南石油大学学报(自然科学版), 2014, 36(6): 9-17.
KE Weili, TONG Xiaoguang, WEN Zhixin, et al. Hydrocarbon geological characteristics and potential prospect of basins in Bengal Gulf West[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(6): 9-17.
[10] BASTIA R, RADHAKRISHNA M. Basin evolution and petroleum prospectivity of the continental margins of India[M]. Amsterdam: Elsevier, 2012.
[11] BASTIA R, RADHAKRISHNA M, DAS S, et al. Delineation of the 85°E ridge and its structure in the Mahanadi offshore basin, eastern continental margin of India (ECMI), from seismic reflection imaging[J]. Marine and Petroleum Geology, 2010, 27(9): 1841-1848.
[12] BASTIA R, DAS S, RADHAKRISHNA M. Pre- and post-collisional depositional history in the upper and middle Bengal fan and evaluation of deepwater reservoir potential along the northeast continental margin of India[J]. Marine and Petroleum Geology, 2010, 27(9): 2051-2061.
[13] 李江海, 张华添, 李洪林. 印度洋大地构造背景及其构造演化: 印度洋底大地构造图研究进展[J]. 海洋学报, 2015, 37(7): 1-14.
LI Jianghai, ZHANG Huatian, LI Honglin. The tectonic setting and evolution of India Ocean: Research progress of tectonic map of Indian Ocean[J]. Acta Oceanologica Sinica, 2015, 37(7): 1-14.
[14] CANDE S, PATRIAT P, DYMENT J. Motion between the Indian, Antarctic and African plates in the early Cenozoic[J]. Geophysical Journal International, 2010, 183(1): 127-149.
[15] RADHAKRISHNA M, TWINKLE D, NAYAK S, et al. Crustal structure and rift architecture across the Krishna-Godavari basin in the central eastern continental margins of India based on analysis of gravity and seismic data[J]. Marine and Petroleum Geology, 2012, 37(1): 129-146.
[16] KRISHNA K, ISMAIEL M, SRINIVAS K, et al. Sediment pathways and emergence of Himalayan source material in the Bay of Bengal[J]. Current Science, 2016, 110(2): 143-155.
[17] ISMAIEL M, KRISHNA K, SRINIVAS K, et al. Internal structure of the 85°E ridge, Bay of Bengal: Evidence for multiphase volcanism[J]. Marine and Petroleum Geology, 2017, 80: 254-264.
[18] 冯杨伟, 屈红军, 张瑾爱, 等. 印度东部大陆边缘克里希纳—戈达瓦里盆地油气分布规律[J]. 西北大学学报(自然科学版), 2016, 46(3): 408-414.
FENG Yangwei, QU Hongjun, ZHANG Jin’ai, et al. Distribution of hydrocarbon fields in Krishna-Godavari basin, East India margin[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(3): 408-414.
[19] 秦雁群, 张光亚, 梁英波, 等. 南大西洋深水油气分布特征、聚集规律与勘探方向[J]. 天然气地球科学, 2016, 27(2): 229-240.
QIN Yanqun, ZHANG Guangya, LIANG Yingbo, et al. Distribution characteristics, accumulation rules and exploration directions of deep water hydrocarbon in South Atlantic[J]. Natural Gas Geoscience, 2016, 27(2): 229-240.
[20] BERRA F, ANGIOLINI L. The evolution of the Tethys region throughout the Phanerozoic: A brief tectonic reconstruction[C]// MARLOW L, KENDALL C, YOSE L. Petroleum systems of the Tethyan region. Tulsa: AAPG, 2014: 1-27.
[21] ROGERS J, SANTOSH A. Continents and supercontinents[M]. New York: Oxford University Press, 2004.
[22] FRISCH W, MESCHEDE M, BLAKEY R. Plate tectonics: Continental drift and mountain building[M]. Berlin: Springer-Verlag, 2011.
[23] SOMME T, HELLAND-HANSEN W, MARTINSEN O, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387.
[24] SOMME T, MARTINSEN O, THURMOND J. Reconstructing morphological and depositional characteristics in subsurface sedimentary systems: An example from the Maastrichtian- Danian Ormen Lange system, More Basin, Norwegian Sea[J]. AAPG Bulletin, 2009, 93(10): 1347-1377.
[25] CARVAJAL C, STEEL R, PETTER A. Sediment supply: The main driver of shelf-margin growth[J]. Earth-Science Reviews, 2009, 96(3): 221-248.
[26] CHIVAS A, CHIOCCI F. An overview of the continental shelves of the world[C]//CHIOCCI F, CHIVAS A. Continental shelves of the world: The evolution during the last glacio-eustatic cycle. London: Geological Society of London, 2014: 1-5.
[27] PICKERING K, HISCOTT R. Deep marine systems: Processes, deposits, environments, tectonics and sedimentation[M]. Oxford: American Geophysical Union and Wiley, 2016.
[28] POSAMENTIER H, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388.
[29] POSAMENTIER H, WALKER R. Deep-water turbidites and submarine fans[C]//POSAMENTIER H, WALKER R. Facies models revisited. Tulsa: SEPM, 2006: 399-520.
[30] MOHRIAK W, FAINSTEIN R. Phanerozoic regional geology of the eastern Brazilian[C]//ROBERTS D, BALLY A. Regional geology and tectonics: Phanerozoic passive margins, cratonic basins and global tectonic maps. Amsterdam: Elsevier, 2012: 223-282.
[31] READING H, RICHARDS M. The classification of deepwater siliciclastic depositional systems by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822.
[32] DROZ L, MARSSET T, ONDREAS H, et al. Architecture of an active mud-rich turbidite system: The Zaire Fan (Congo-Angola margin southeast Atlantic): Results from Zaiango 1 and 2 cruises[J]. AAPG Bulletin, 2003, 87(7): 1145-1168.
[33] NEMCOK M, RYBAR S, SINHA S, et al. Transform margins: Development, controls and petroleum systems: An introduction[C]// NEMCOK M, RYBAR S, SINHA S, et al. Transform margins: Development, controls and petroleum systems. London: Geological Society of London, 2016: 1-38.
[34] 秦雁群, 张光亚, 巴丹, 等. 转换型被动陆缘盆地地质特征与深水油气聚集规律: 以赤道大西洋西非边缘盆地群为例[J]. 地学前缘, 2016, 23(1): 229-239.
QIN Yanqun, ZHANG Guangya, BA Dan, et al. Geological characteristics and deep water hydrocarbon accumulation patterns of transformed passive continental marginal basins: A case history from basins of West Africa margin in Equatorial Atlantic[J]. Earth Science Frontiers, 2016, 23(1): 229-239.
[35] BASILE C. Transform continental margins: Part 1: Concepts and models[J]. Tectonophysics, 2015, 661: 1-10.
[36] LEPINAY M, LONCKE L, BASILE C, et al. Transform continental margins: Part 2: A worldwide review[J]. Tectonophysics, 2016, 693(Part A): 96-115.
[37] KOLLA V. A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 450-469.
[38] SALMANAC G, ABDULA I. Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique[J]. Sedimentary Geology, 1995, 96(1): 7-41.
[39] MORGAN R. Prospectivity in ultradeep water: The case for petroleum generation and migration within the outer parts of the Niger Delta apron[C]//ARTHUR T, MACGREGOR D, CAMERON N. Petroleum geology of Africa: New themes and developing technologies. London: Geological Society of London, 2003: 151-164.
[40] ALLEN P, ALLEN J. Basin analysis: Principles and application to petroleum play assessment[M]. Washington: Wiley-Blackwell, 2013: 371-454.
文章导航

/