针对渤海湾盆地济阳坳陷东营凹陷古近系沙河街组典型(块状、纹层状、层状)灰质泥页岩样品的微米—纳米级孔隙体系结构特征进行了系统研究。利用高压压汞法(MICP)检测多个连通孔隙体系,同时表征其孔隙度、渗透率和孔道迂曲度;采用不同样品(粒径500~841 μm GRI(美国应用天然气研究所)标准的颗粒,边长1 cm的立方体,直径2.54 cm、高度2~3 cm的岩心柱),通过低压气体物理吸附、基质渗透率测定、高压压汞分析、氦气孔隙度测定、非稳态脉冲渗透率测定等分析方法测定泥页岩的孔渗参数。高压压汞法测得泥页岩样品平均孔隙度为(6.31±1.64)%,基质渗透率在(27.4±31.1)×10-9 μm2,基于体积法的中值孔喉直径为(8.20±3.01)nm,孔隙主要分布在孔喉直径5 nm区域,孔喉比随着孔隙直径的减小而降低。具有层理的泥页岩样品的渗透率是泥页岩基质渗透率的近20倍。泥页岩纳米级(孔喉直径为2.8~10.0 nm)孔隙体系的几何迂曲度高达8.44,说明具有较差的孔隙连通性和输导流体的能力,会影响泥页岩油气的保存和开采。图8表4参35
For typical blocky, laminated and bedded mudrock samples from the Paleogene Shahejie Formation in the Dongying Sag of Bohai Bay Basin, this work systematically focuses on their structure characterization of multiple micro-nano pore networks. A use of mercury injection capillary pressure (MICP) documented the presence of multiple μm-nm pore networks, and obtained their respective porosity, permeability and tortuosity. Different sample sizes (500-841 μm GRI fractions, 1 cm-sized cubes, and 2.54 cm in diameter and 2-3 cm in height core plugs) and approaches (low-pressure N2 gas physisorption, GRI matrix permeability, MICP, heliumpy cnometry, and pulse decay permeameter) were used to measure pore size distribution, porosity and permeability. The average porosity and matrix permeability determined from MICP are (6.31±1.64)% and (27.4±31.1)×10-9 μm2, the pore throat diameter of pores is mainly around 5 nm, and the median pore throat diameter based on 50% of final cumulative volume is (8.20±3.01) nm in shale. The pore-throat ratios decrease with a decrease of pore size diameter. Moreover, the permeability of shale samples with lamination is nearly 20 times larger than matrix permeability. The geometrical tortuosity of the nano-scale 2.8-10.0 nm pore networks is 8.44 in these shales, which indicates a poor connectivity of matrix pore network and low flow capability. Overall, the variable and limited pore connectivity of shale samples will affect hydrocarbon preservation and recovery.
[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
[2] 宋国奇, 徐兴友, 李政, 等. 济阳坳陷古近系陆相页岩油产量的影响因素[J]. 石油与天然气地质, 2015, 36(3): 463-471.
SONG Guoqi, XU Xingyou, LI Zheng, et al. Factors controlling oil production from Paleogene shale in Jiyang Depression[J]. Oil and Gas Geology, 2015, 36(3): 463-471.
[3] 吴靖. 东营凹陷古近系沙四上亚段细粒岩沉积特征与层序地层研究[D]. 北京: 中国地质大学(北京), 2015.
WU Jing. The study on sedimentary characteristics and sequence stratigraphy of fine-grained rocks of the upper fourth member of Paleogene Shahejie Formation, Dongying Depression[D]. Beijing: China University of Geosciences (Beijing), 2015.
[4] 田继军, 姜在兴. 东营凹陷沙河街组四段上亚段层序地层特征与沉积体系演化[J]. 地质学报, 2009, 83(6): 836-845.
TIAN Jijun, JIANG Zaixing. Sequence stratigraphy characteristics and sedimentary system evolution of Upper Es 4 in the Dongying Depression[J]. Acta Geologica Sinica, 2009, 83(6): 836-845.
[5] 艾亚博. 渤海湾盆地济阳坳陷东营凹陷利津洼陷带利页1井完井地质总结报告[R]. 东营: 中国石油化工股份有限公司胜利油田分公司, 2013.
AI Yabo. Well completion report for Liye #1 in Lijin Sag of Dongying Depression, Jiyang Depression in Bohai Bay Basin[R]. Dongying: Shengli Oilfield of Sinopec, 2013.
[6] 中国石油勘探开发研究院. 岩石毛管压力曲线的测定: GB/T 29171—2012[S]. 北京: 中国标准出版社, 2012.
Research Institute of Petroleum Exploration & Development. Rock capillary pressure measurement: GB/T 29171-2012[S]. Beijing: China Standards Press, 2012.
[7] GAO Z Y, HU Q H. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry[J]. Journal of Geophysics and Engineering, 2013, 10(2): 14-25.
[8] WANG S, JAVADPOUR F, FANG Q H. Confinement correction to mercury intrusion capillary pressure of shale nanopores[J]. Scientific Reports, 2016, 6: 20610.
[9] WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of National Academy of Sciences, 1921, 7(4): 115-116.
[10] KOLODZIE S, Jr. Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle Field, Colorado[R]. SPE 9382-MS, 1980.
[11] SWANSON B F. A simple correlation between permeabilities and mercury capillary pressures[J]. Journal of Petroleum Technology, 1981, 33(12): 2498-2504.
[12] KATZ A J, THOMPSON A H. Prediction of rock electrical conductivity from mercury injection measurements[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B1): 599-607.
[13] KATZ A J, THOMPSON A H. Quantitative prediction of permeability in porous rock[J]. Physical Review B, 1986, 34(11): 8179.
[14] HAGER J. Steam drying of porous media[D]. Sweden: Lund University, 1998.
[15] WEBB P A. An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data[R]. Norcross: Micromeritics Instrument Corp., 2001.
[16] EPSTEIN N. On tortuosity and the tortuosity factor in flow and diffusion through porous media[J]. Chemical and Engineering Science, 1989, 44(3): 777-779.
[17] HU Q H, WANG J S. Aqueous-phase diffusion in unsaturated geologic media: A review[J]. Critical Reviews in Environmental Science and Technology, 2003, 33(3): 275-297.
[18] GOMMES C J, BONS A J, BLACHER S, et al. Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions[J]. Aiche Journal, 2009, 55(8): 2000-2012.
[19] HU Q, EWING R P, ROWE H D. Low nanopore connectivity limits gas production in Barnett formation[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8073-8087.
[20] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Pure & Applied Chemistry, 2015, 87(9): 1051-1069.
[21] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
[22] ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164.
[23] JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.
[24] VENKATARAMANAN L, HURLIMANN M D, TARVIN J A, et al. Experimental studies of the effects of wettability and fluid saturation on nuclear magnetic resonance and dielectric measurements in limestone[J]. Petrophysics, 2014, 55(6): 572-586.
[25] KUILA U, MCCARTY D K, DERKOWSKI A, et al. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel, 2014, 135(6): 359-373.
[26] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing maturity[J]. International Journal of Coal Geology, 2012, 103(23): 26-31.
[27] WARDLAW N C, CASSAN J P. Oil recovery efficiency and the rock-pore properties of some sandstone reservoirs[J]. Bulletin of Canadian Petroleum Geology, 1979, 27(2): 117-138.
[28] SONG Y Q. Pore sizes and pore connectivity in rocks using the effect of internal field[J]. Magnetic Resonance Imaging, 2001, 19(3/4): 417-421.
[29] PERSOFF P, HULEN J B. Hydrologic characterization of reservoir metagraywacke from shallow and deep levels of the Geysers vapor- dominated geothermal system, California, USA[J]. Geothermics, 2002, 30(2/3): 169-192.
[30] SCHWARTZ F W, ZHANG H B. Fundamentals of ground water[M]. New York: John Wiley & Sons, 2002.
[31] 张顺, 陈世悦, 鄢继华, 等. 东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J]. 天然气地球科学, 2015, 26(2): 320-332.
ZHANG Shun, CHEN Shiyue, YAN Jihua, et al. Characteristics of shale lithofacies and reservoir space in the 3rd and 4th Members of Shahejie Formation, the West of Dongying Sag[J]. Natural Gas Geoscience, 2015, 26(2): 320-332.
[32] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances: I: Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73: 373-380.
[33] BUSTIN R M, BUSTINA M M, CUI X, et al. Impact of shale properties on pore structure and storage characteristics[R]. SPE119892-MS, 2008.
[34] GUIDRY F K, LUFFEL D L, CURTIS J B. Development of laboratory and petrophysical techniques for evaluating shale reservoirs[R]. Houston: Gas Research Institute, 1996.
[35] SLATT R M, O’BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.