油气勘探

中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制

展开
  • 1. 广州海洋地质调查局,国土资源部海底矿产资源重点实验室,广州 510075;
    2. 中山大学海洋科学学院,广东珠海 519082;
    3. 中国地质大学(武汉),武汉 430074
张伟(1987-),男,湖北赤壁人,博士,广州海洋地质调查局与中山大学在站博士后,主要从事天然气水合物地质勘探研究工作。地址:广州市越秀区环市东路477号,广州海洋地质调查局,邮政编码:510075。E-mail:zwgmgs@foxmail.com

收稿日期: 2017-05-03

  修回日期: 2017-08-01

  网络出版日期: 2017-09-18

基金资助

国家水合物专项项目(GZH201100305); 国家自然科学基金青年科学基金项目(41602149)

Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea

Expand
  • 1. MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou 510075, China;
    2. School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China;
    3. China University of Geosciences (Wuhan), Wuhan 430074, China

Received date: 2017-05-03

  Revised date: 2017-08-01

  Online published: 2017-09-18

摘要

基于中国南海北部神狐海域GMGS3钻探区内岩心、测井、二维及三维地震数据综合分析,对黏土质粉砂储集层高饱和度扩散型天然气水合物分布特征、差异聚集机理及其成藏机制进行研究。研究结果表明:高饱和度水合物通常对应着高电阻率、低声波时差,强似海底反射(BSRs),且在BSRs下部可能存在泥底辟及气烟囱等形式的流体渗漏现象;水合物储集层以黏土质粉砂细粒沉积物为主,局部存在具有较高孔渗性的粉砂细粒沉积物;水合物类型以I型为主,在I型水合物层的底部可能存在II型水合物;水合物气源为热解气、微生物气混合成因,来自白云凹陷中心深部的热成因气通过断层和泥底辟及气烟囱向浅层运移并与原位生物气混合,直至运移至水合物温度、压力稳定区域中富集形成高饱和度水合物;流体运移输导系统影响和控制了高饱和度水合物差异聚集成藏。图9参34

本文引用格式

张伟, 梁金强, 陆敬安, 尉建功, 苏丕波, 方允鑫, 郭依群, 杨胜雄, 张光学 . 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017 , 44(5) : 670 -680 . DOI: 10.11698/PED.2017.05.02

Abstract

Based on the comprehensive interpretation of cores, loggings and 2D/3D seismic data of Shenhu GMGS3 drilling area in the northern South China Sea, the distribution characteristics, differential accumulation mechanism and reservoir forming mechanism of diffusion type natural gas hydrate with high saturation discovered from clayey silt reservoirs were investigated. The following findings are reached through the research: (1) Gas hydrate with high saturation often displays high resistivity, low interval transit time, and strong bottom-simulating reflectors (BSRs), and accompanies with fluid seepage phenomena beneath BSRs, such as mud diapiric structure and gas chimney. (2) The gas hydrate reservoirs are dominated by fine grained clayey silt sediments, and the reservoirs have higher porosity and permeability in local parts. (3) The gas hydrate is largely type I, whereas type II gas hydrate may exist below the type I gas hydrate. (4) The gas sources are mixed microbial and thermogenic gases, and the thermogenic gas originated from the deep formation in the center of Baiyun Sag migrated into shallow strata through faults, mud diapirs and gas chimneys, then was mixed with microbial gas in situ and continued to migrate until they accumulated in the temperature and pressure stability zone and formed diffusion type gas hydrate with high saturation finally. (5) The fluid migration system influenced and controlled the differential distribution of gas hydrate with high saturation.

参考文献

[1] DALLIMORE S R, COLLETT T S, TAYLOR A E, et al. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, northwest territories, Canada[J]. Bulletin of the Geological Survey of Canada, 2005, 585: 1-36.
[2] ANDERSON B, HANCOCK S, WILSON S, et al. Formation pressure testing at the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: Operational summary, history matching, and interpretations[J]. Marine and Petroleum Geology, 2011, 28(2): 478-492.
[3] ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(2): 368-378.
[4] BOROWSKI W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America[J]. Chemical Geology, 2004, 205(3): 311-346.
[5] BOSWELL R, FRYE M, SHELANDER D, et al. Architecture of gas hydrate-bearing sands from Walker Ridge 313, Green canyon 955, and Alaminos canyon 21: Northern deepwater Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 134-149.
[6] TREHU A M, LONG P E, TORRES G, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge constraints from ODP Leg 204[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 845-862.
[7] UCHIDA T, TSUJI T. Petrophysical properties of natural gas hydrates-bearing sands and their sedimentology in the Nankai Trough[J]. Resource Geology, 2004, 54(1): 79-87.
[8] KUMAR P, COLLETT T S, BOSWELL R, et al. Geologic implications of gas hydrate in the offshore of India: Krishna- Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin[J]. Marine and Petroleum Geology, 2014, 58: 29-98.
[9] BAHK J J, KIM G Y, CHUN J H, et al. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47(11): 30-42.
[10] WANG X J, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292.
[11] YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: A critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(12): 1-5.
[12] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.
YANG Shengxiong, LIANG Jinqiang, LU Jin’an, et al. New understandings on characteristics and controlling factors of gas hydrate reservoirs in Shenhu area on northern slope of South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1-14.
[13] 郭依群, 杨胜雄, 梁金强, 等. 南海北部神狐海域高饱和度水合物分布特征[J]. 地学前缘, 2017, 24(4): 15-23.
GUO Yiqun, YANG Shengxiong, LIANG Jinqiang, et al. Characteristics of high gas hydrate distribution in the Shenhu area, northern slope of South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 15-23.
[14] SU M, YANG R, WANG H, et al. Gas hydrates distribution in the Shenhu Area, northern South China Sea: Comparisons between the eight drilling sites with gas hydrate petroleum system[J]. Geologica Acta, 2016, 14(2): 79-100.
[15] 李守军, 初凤友, 方银霞, 等. 南海北部陆坡神狐海域浅地层与单道地震剖面联合解释: 水合物区沉积地层特征[J]. 热带海洋学报, 2010, 29(4): 56-62.
LI Shoujun, CHU Fengyou, FANG Yinxia, et al. Associated interpretation of sub-bottom and single-channel seismic profiles from slope of Shenhu Area in the northern South China Sea: Characteristics of gas hydrate sediment[J]. Journal of Tropical Oceanography, 2010, 29(4): 56-62.
[16] 苏明, 杨睿, 吴能友, 等. 南海北部陆坡区神狐海域构造特征及对水合物的控制[J]. 地质学报, 2014, 88(3): 318-326.
SU Min, YANG Rui, WU Nengyou, et al. Structural characteristics in the Shenhu Area, northern continental slope of South China Sea, and their influence on gas hydrate[J]. Acta Geologica Sinica, 2014, 88(3): 318-326.
[17] 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7): 128-135.
LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7): 128-135.
[18] 钟志洪, 施和生, 朱明, 等. 珠江口盆地构造-地层格架及成因机制探讨[J]. 中国海上油气, 2014, 26(5): 20-29.
ZHONG Zhihong, SHI Hesheng, ZHU Ming, et al. A discussion on the tectonic-stratigraphic framework and its origin mechanism in Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2014, 26(5): 20-29.
[19] 何家雄, 颜文, 祝有海, 等. 南海北部边缘盆地生物气/亚生物气资源与水合物成矿成藏[J]. 天然气工业, 2013, 33(6): 121-134.
HE Jiaxiong, YAN Wen, ZHU Youhai, et al. Bio-genetic and sub-biogenetic gas resource potential and genetic types of natural gas hydrate in the northern marginal basins of South China Sea[J]. Natural Gas Industry, 2013, 33(6): 121-134.
[20] 石万忠, 宋志峰, 王晓龙, 等. 珠江口盆地白云凹陷底辟构造类型及其成因[J]. 地球科学——中国地质大学学报, 2009, 34(5): 778-784.
SHI Wanzhong, SONG Zhifeng, WANG Xiaolong, et al. Diapir structure and its origin in the Baiyun depression, Pearl River Mouth Basin, China[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(5): 778-784.
[21] 王家豪, 庞雄, 王存武, 等. 珠江口盆地白云凹陷中央底辟带的发现及识别[J]. 地球科学——中国地质大学学报, 2006, 31(2): 209-213.
WANG Jiahao, PANG Xiong, WANG Cunwu, et al. Discovery and recognition of the central diapiric zone in Baiyun depression, Pearl River Mouth Basin[J]. Earth Science—Journal of China University of Geosciences, 2006, 31(2): 209-213.
[22] SU Ming, SHA Zhibin, ZHANG Cuimei, et al. Types, characteristics and significances of migrating pathways of gas bearing fluids in the Shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(1): 219-231.
[23] 苏丕波, 梁金强, 张子健, 等. 神狐海域扩散型水合物在地震反射剖面上的“亮点”与“暗点”分析[J]. 地学前缘, 2017, 24(4): 51-56.
SU Pibo, LIANG Jinqiang, ZHANG Zijian, et al. Analysis on bright spots and dim out of seismic section for diffusion-type hydrate in Shenhu area[J]. Earth Science Frontiers, 2017, 24(4): 51-56.
[24] MELDAHL P, HEGGLAND R, BRIL B, et al. Identifying faults and gas chimneys using multi-attributes and neural networks[J]. The Leading Edge, 2001, 20(5): 474-482.
[25] 陈芳, 苏新, 周洋, 等. 南海北部陆坡神狐海域晚中新世以来沉积物中生物组分变化及意义[J]. 海洋地质与第四纪地质, 2009, 29(2): 1-8.
CHEN Fang, SU Xin, ZHOU Yang, et al. Variations in biogenic components of Late Miocene-Holocene sediments from Shenhu area in the northern South China Sea and their geological implication[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 1-8.
[26] KRAEMER L M, OWEN R M, DICKENS G R. Lithology of the upper gas hydrate zone, Blake Outer Ridge: A link between diatoms, porosity, and gas hydrate[R]. Texas: Ocean Drilling Program, 2000.
[27] 王静丽, 梁金强, 宗欣, 等. 南海北部神狐海域水合物差异性分布的控制因素[J]. 海洋地质前沿, 2015, 31(1): 24-30.
WANG Jingli, LIANG Jinqiang, ZONG Xin, et al. Differentiated distribution of methane hydrate in the Shenhu Area of the northern South China Sea and controlling factors[J]. Marine Geology Frontiers, 2015, 31(1): 24-30.
[28] 张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3): 388-397.
ZHANG Hui, LU Hailong, LIANG Jinqiang, et al. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea[J]. Chinese Science Bulletin, 2016, 61(3): 388-397.
[29] 柳广第. 石油地质学[M]. 北京: 石油工业出版社, 2009: 146-147.
LIU Guangdi. Petroleum geology[M]. Beijing: Petroleum Industry Press, 2009: 146-147.
[30] BERNARD B, BROOKS J M, SACKETT W M. A geochemical model for characterization of hydrocarbon gas source in marine sediments[R]. Houston: Offshore Technology Conference, 1977.
[31] 黄霞, 祝有海, 卢振权, 等. 南海北部水合物钻探区烃类气体成因类型[J]. 现代地质, 2010, 24(3): 576-580.
HUANG Xia, ZHU Youhai, LU Zhenquan, et al. Study on genetic types of hydrate carbon gases from the gas hydrate drilling area, the northern South China Sea[J]. Geoscience, 2010, 24(3): 576-580.
[32] CHEN D X, WU S G, DONG D D, et al. Focused fluid flow in the Baiyun Sag, northern South China Sea: Implications for the source of gas in hydrate reservoirs[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(1): 178-189.
[33] 施和生, 柳保军, 颜承志, 等. 珠江口盆地白云-荔湾深水区油气成藏条件与勘探潜力[J]. 中国海上油气, 2010, 22(6): 369-374.
SHI Hesheng, LIU Baojun, YAN Chengzhi, et al. Hydrocarbon accumulation conditions and exploration potential in Baiyun-Liwan deepwater area, Pearl River Mouth basin[J]. China Offshore Oil and Gas, 2010, 22(6): 369-374.
[34] COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates: A review[M]. Denver: AAPG, 2009: 146-219.
文章导航

/