综合研究

非常规油气地质研究进展与发展趋势

展开
  • 1. 中国石油大学(北京)油气资源与工程国家重点实验室,北京 102249;
    2. 东北石油大学非常规油气协同创新中心,黑龙江大庆 163000
宋岩(1957-),女,山东淄博人,博士,中国石油大学(北京)教授,李四光地质科学奖获得者,长期从事天然气地质学方面的研究。地址:北京市昌平区府学路18号,中国石油大学(北京)非常规天然气研究院,邮政编码:102249。E-mail:sya@petrochina.com.cn 联系作者简介:李卓(1983-),男,黑龙江绥化人,博士,中国石油大学(北京)助理研究员,主要从事非常规天然气富集机理和资源评价工作。地址:北京市昌平区府学路18号,中国石油大学(北京)非常规天然气研究院,邮政编码:102249。E-mail:zhuo.li@cup.edu.cn

修回日期: 2017-01-09

  网络出版日期: 2017-07-27

Progress and development trend of unconventional oil and gas geological research

Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. Unconventional Oil and Gas Collaborative Innovation Center, Northeast University of Petroleum, Daqing 163000, China

Revised date: 2017-01-09

  Online published: 2017-07-27

Supported by

国家科技重大专项(2017ZX05035-002); 国家自然科学基金(41502123)

摘要

综合分析研究了非常规油气储集层孔隙结构、非常规油气赋存状态、充注机理、富集主控因素和高产成藏模式方面的新进展。非常规油气地质研究从纳米孔隙的观测发展到全孔径孔隙结构的定量表征和三维重构,从非常规油气赋存状态的宏观、静态特征描述发展到微观、动态演化研究,从启动压差驱动和优势通道运移发展到跳跃式阶梯充注和润湿性优势输导,从“源控论”发展到源控下的“优势源储组合+保存条件”的成藏论,从非常规油气的“富集”地质模式发展到“富集+高产”的成藏模式,展示了非常规油气地质理论的研究进展和未来的发展趋势。在此基础上指出了非常规油气地质理论、深层非常规油气富集条件和资源可采潜力、非常规油气地质研究对工程技术的渗透及非常规油气资源共采基础地质研究面临的问题与挑战。图6表2参79

本文引用格式

宋岩, 李卓, 姜振学, 罗群, 刘冬冬, 高之业 . 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017 , 44(4) : 638 -648 . DOI: 10.11698/PED.2017.04.18

Abstract

The progress in pore structure characterization, hydrocarbon occurrence state, mechanism of oil and gas accumulation, main controlling factors and high production model of unconventional oil and gas is reviewed. The unconventional oil and gas geological research developed from observation of the nanopores to quantitative full scale and 3D pore structure characterization, from macroscopic occurrence state study to microscopic occurrence state evolution discussion, from differential pressure drive and preferential channel migration to staged accumulation and wettability preferential migration, from accumulation controlled by source to accumulation jointly controlled by source-reservoir assemblage and preservation conditions, from accumulation model to enrichment and high production model, revealing the research progresses and future trends of unconventional oil and gas geology. Challenges are presented in unconventional oil and gas geological theory, enrichment conditions and recoverable resources potential of deeply buried unconventional oil and gas, combination of unconventional oil and gas geological research and engineering technique, and basic geologic research for joint mining of different unconventional oil and gas resources.

参考文献

[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[2] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399.
ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399.
[3] 康玉柱. 中国非常规泥页岩油气藏特征及勘探前景展望[J]. 天然气工业, 2012, 32(4): 1-5.
KANG Yuzhu. Characteristics and exploration prospect of unconventional shale gas reservoirs in China[J]. Natural Gas Industry, 2012, 32(4): 1-5.
[4] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
[5] JAVADPOUR F. Nanopores and apparent permeability of gas slow in mudrocks (shales and siltstones)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
[6] LOUCKS R G, REED R M, RUPPEL S C, et al. Genesis, and distribution of nanometer-scale pore in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[7] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.
ZOU Caineng, ZHU Rukai, BAI Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
[8] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[9] CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transimission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
[10] 陈尚斌, 夏筱红, 秦勇, 等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报, 2013, 38(5): 760-765.
CHEN Shangbin, XIA Xiaohong, QIN Yong, et al. Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5): 760-765.
[11] 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220.
YU Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4): 211-220.
[12] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[13] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
[14] 崔景伟, 朱如凯, 吴松涛, 等. 致密砂岩层内非均质性及含油性下限: 以鄂尔多盆地三叠系延长组长7段为例[J]. 石油学报, 2013, 34(5): 877-882.
CUI Jingwei, ZHU Rukai, WU Songtao, et al. Heterogeneity and lower oily limits for tight sandstones: A case study on Chang-7 oil layers of the Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(5): 877-882.
[15] WANG D, ZHANG J, BUTLER R, et al. Scaling laboratory data surfactant imbibition rates to the field in fractured shale formations[R]. SPE 178489-PA, 2015.
[16] 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134.
JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. The whole-aperture pore structure characteristics and its effect on gas content of Longmaxi Formation shale in the southeastern Sichuan basin[J]. Earth Science Frontiers, 2016, 23(2): 126-134.
[17] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677.
[18] 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427.
TIAN Hua, ZHANG Shuichang, LIU Shaobo, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427.
[19] WANG G C, JU Y W, YAN Z F, et al. Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan-Huaibei Coalfield in China[J]. Marine and Petroleum Geology, 2015, 62(1): 1-13.
[20] 王明磊, 张遂安, 张福东, 等. 鄂尔多斯盆地延长组长7段致密油微观赋存形式定量研究[J]. 石油勘探与开发, 2015, 42(6): 757-762.
WANG Minglei, ZHANG Suian, ZHANG Fudong, et al. Quantitative research on tight oil microscopic state of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 757-762.
[21] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(2): 26-31.
[22] DESBOIS G, URAI J L, KUKLA P A. Morphology of the pore space in claystones-evidence from BIB/FIB ion beam sectioning and cryo-SEM observations[J]. Earth, 2009, 4(1): 15-22.
[23] MILNER M, MCLIN R, PETRIELLO J. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion-milled backscatter SEM methods[R]. SPE 138975-MS, 2010.
[24] 白斌, 朱如凯, 吴松涛, 等. 利用多尺度 CT 成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3): 329-333.
BAI Bin, ZHU Rukai, WU Songtao, et al. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3): 329-333.
[25] FISHMAN N S, HACKLEY P C, LOWERS H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103(2): 32-50.
[26] MA L, TAYLOR K G, LEE P D, et al. Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone: The Carboniferous Bowland Shale, Northern England[J]. Marine and Petroleum Geology, 2016, 76(5): 193-205.
[27] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18.
ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18.
[28] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[29] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[30] SONG Y, LI Z, JIANG L, et al. The concept and the accumulation characteristics of unconventional hydrocarbon resources[J]. Petroleum Science, 2015, 12(3): 563-572.
[31] BOWKER K A. Barnett shale gas production, Fort Worth Basin: Issue and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
[32] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[33] 洪峰, 宋岩, 赵孟军, 等. 沁水盆地盖层对煤层气富集的影响[J]. 天然气工业, 2005, 25(12): 34-36.
HONG Feng, SONG Yan, ZHAO Mengjun, et al. Caprock influence on coal bed gas enrichment in Qinshui Basin[J]. Natural Gas Industry, 2005, 25(12); 34-36.
[34] 秦胜飞, 宋岩, 唐修义, 等. 水动力条件对煤层气含量的影响: 煤层气滞留水控气论[J]. 天然气地球科学, 2005, 16(2): 149-152.
QIN Shengfei, SONG Yan, TANG Xiuyi, et al. The influence on coalbed gas content by hydrodynamics: The stagnant groundwater controlling[J]. Natural Gas Geoscience, 2005, 16(2): 149-152.
[35] GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on themethane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123(2): 34-51.
[36] JI W M, SONG Y, JIANG Z X, et al. Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin, China[J]. International Journal of Coal Geology, 2014, 134/135(2): 61-73.
[37] JI W M, SONG Y, JIANG Z X, et al. Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China[J]. Marine and Petroleum Geology, 2015, 68(3): 94-106.
[38] ZHOU B, XU R N, JIANG P X. Novel molecular simulation process design of adsorption in realistic shale kerogen spherical pores[J]. Fuel, 2016, 180(10): 718-726.
[39] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
[40] SLATT R M, O’BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[41] 朱如凯, 白斌, 崔景伟, 等. 非常规油气致密储集层微观结构研究进展[J]. 古地理学报, 2013, 15(5): 615-623.
ZHU Rukai, BAI Bin, CUI Jingwei, et al. Research advances of microstructure in unconventional tight oil and gas reserviors[J]. Journal of Palaeogeography, 2013, 15(5): 615-623.
[42] 宋岩, 姜林, 马行陟. 非常规油气藏的形成及其分布特征[J]. 古地理学报, 2013, 15(5): 605-614.
SONG Yan, JIANG Lin, MA Xingzhi. Formation and distribution characteristics of unconventional oil and gas reservoir[J]. Journal of Palaeogeography, 2013, 15(5): 605-614.
[43] 宋岩, 柳少波, 赵孟军, 等. 煤层气与常规天然气成藏机理的差异性[J]. 天然气工业, 2011, 31(12): 47-53.
SONG Yan, LIU Shaobo, ZHAO Mengjun, et al. Difference of gas pooling mechanism between coalbed methane gas and conventional natural gas[J]. Natrual Gas Industry, 2011, 31(12): 47-53.
[44] 宋岩, 赵孟军, 柳少波, 等. 构造演化对煤层气富集程度的影响[J]. 科学通报, 2005, 50(S1): 1-5.
SONG Yan, ZHAO Mengjun, LIU Shaobo, et al. Effects of tectonic evolution on coalbed methane accumulation[J]. Chinese Science Bulletin, 2005, 50(S1): 1-5.
[45] XIAO X M, WEI Q, CAI H F, et al. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China[J]. Petroleum Science, 2015, 12(3): 573-586.
[46] 邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 22(1): 3-17.
ZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 22(1): 3-17.
[47] 张洪, 张水昌, 柳少波, 等. 致密油充注孔喉下限的理论探讨及实例分析[J]. 石油勘探与开发, 2014, 41(3): 367-374.
ZHANG Hong, ZHANG Shuichang, LIU Shaobo, et al. A theoretical discussion and case study on the oil-charging throat threshold for tight reservoirs[J]. Petroleum Exploration and Development, 2014, 41(3): 367-374.
[48] 庞正炼, 邹才能, 陶士振, 等. 中国致密油形成分布与资源潜力评价[J]. 中国工程科学, 2012, 14(7): 60-67.
PANG Zhenglian, ZOU Caineng, TAO Shizhen, et al. Formation, distribution and resource evaluation of tight oil in China[J]. Engineering Sciences, 2012, 14(7): 60-67.
[49] 高雄雄, 罗群, 姚立邈, 等. 源储组合特征对花海凹陷致密油成藏的影响[J]. 特种油气藏, 2016, 23(2): 56-59.
GAO Xiongxiong, LUO Qun, YAO Limiao, et al. The effect of source-reservoir combinations on tight oil accumulation in Huahai Depression[J]. Special Oil and Gas Reservoirs, 2016, 23(2): 56-59.
[50] 陶士振, 杨跃明, 庞正炼, 等. 四川盆地侏罗系流体包裹体与致密油形成演化[J]. 岩石学报, 2015, 31(4): 1089-1100.
TAO Shizhen, YANG Yueming, PANG Zhenglian, et al. The fluid inclusion characteristics and formation, evolution of tight oil of Jurassic, Sichuan Basin[J]. Acta Petrologica Sinica, 2015, 31(4): 1089-1100.
[51] 郭彦如, 刘俊榜, 杨华, 等. 鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理[J]. 石油勘探与开发, 2012, 39(4): 417-425.
GUO Yanru, LIU Junbang, YANG Hua, et al. Hydrocarbon accumulation mechanism of low permeable tight lithologic oil reservoirs in the Yanchang Formation, Ordos Basin, China[J]. Petroleum Exploration and Development, 2012, 39(4): 417-425.
[52] KUHN P P, PRIMIO R D, HILL R, et al. Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation[J]. AAPG Bulletin, 2012, 96(10): 1867-1897.
[53] 公言杰, 柳少波, 刘可禹, 等. 致密油充注过程中储层润湿性变化对含油性影响: 以川中侏罗系致密油为例[J]. 石油实验地质, 2015, 37(4): 423-429.
GONG Yanjie, LIU Shaobo, LIU Keyu, et al. Influence of reservoir wettability changes on oil-bearing features during tight oil accumulation: A case study of Jurassic tight oils in Sichuan Basin[J]. Petroleum Geology & Experiment, 2015, 37(4): 423-429.
[54] 罗晓容, 张刘平, 杨华, 等. 鄂尔多斯盆地陇东地区长8~1段低渗油藏成藏过程[J]. 石油与天然气地质, 2010, 31(6): 770-778.
LUO Xiaorong, ZHANG Liuping, YANG Hua, et al. Oil accumulation process in the low-permeability Chang-8~1 member of Longdong area, the Ordos Basin[J]. Oil & Gas Geology, 2010, 31(6): 770-778.
[55] GAO Z Y, HU Q H. Using spontaneous water imbibition to measure building materials’ effective permeability[J]. Special Topics & Reviews in Porous Media, 2012, 3(3): 209-213.
[56] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.
JIA Chengzao, ZOU Caineng, LI Jiangzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Perolei Sincia, 2012, 33(3): 343-350.
[57] 贾承造, 郑民, 张永峰. 非常规油气地质学重要理论问题[J]. 石油学报, 2014, 35(1): 1-10.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Four import theoretical issues of unconventional petroleum geology[J]. Acta Petrolei Sinica, 2014, 35(1): 1-10.
[58] 李建忠, 郑民, 陈晓明, 等. 非常规油气内涵辨析、源-储组合类型及中国非常规油气发展潜力[J]. 石油学报, 2015, 36(5): 521-532.
LI Jiangzhong, ZHENG Min, CHEN Xiaoming, et al. Connotation analyses, source-reservoir assemblage types and development potential of unconventional hydrocarbon in China[J]. Acta Perolei Sincia, 2015, 36(5): 521-532.
[59] 郭旭升. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO Xusheng. Rules of two-factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
[60] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
[61] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158.
YAO Jingli, DENG Xiuqin, ZHAO Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158.
[62] 刘群, 袁选俊, 林森虎, 等. 鄂尔多斯盆地延长组湖相黏土岩分类和沉积环境探讨[J]. 沉积学报, 2014, 32(6): 1017-1025.
LIU Qun, YUAN Xuanjun, LIN Senhu, et al. The classification of lacustrine mudrock and research on its’ depositional environment[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1017-1025.
[63] 叶军, 曾华盛. 川西须家河组泥页岩气成藏条件与勘探潜力[J]. 天然气工业, 2008, 28(12): 18-25.
YE Jun, ZENG Huasheng. Pooling conditions and exploration prospect of shale gas in Xujiahe formation in western Sichuan Depession[J]. Natural Gas Industry, 2008, 28(12): 18-25.
[64] 杨智峰, 曾溅辉, 冯枭, 等. 源储岩性组合对致密油聚集的影响: 以鄂尔多斯盆地延长组长7段为例[J]. 新疆石油地质, 2015, 36(4): 389-393.
YANG Zhifeng, ZENG Jianhui, FENG Xiao, et al. Effects of source-reservoir lithologic assemblage on tight oil accumulation: A case study of Yanchang Chang-7 Member in Ordos Basin[J]. Xinjiang Petroleum Geology, 2015, 36(4): 389-393.
[65] 王红军, 卞从胜, 施振生. 四川盆地须家河组有效源储组合对天然气藏形成的控制作用[J]. 天然气地球科学, 2011, 22(1): 38-46.
WANG Hongjun, BIAN Congsheng, SHI Zhensheng. The control effect of the effective source-reservoir combinations to gas reservoir formation in Xujiahe Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(1): 38-46.
[66] 宋岩, 秦胜飞, 赵孟军. 中国煤层气成藏的两大关键地质因素[J].天然气地球科学, 2007, 18(4): 545-553.
SONG Yan, QIN Shengfei, ZHAO Mengjun. Two key geological factors controlling the coal bed methane in China[J]. Natural Gas Geoscience, 2007, 18(4): 545-553.
[67] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23.
HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23.
[68] 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012, 19(3): 280-294.
NIE Haikuan, BAO Shujing, GAO Bo, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2012, 19(3): 280-294.
[69] 潘仁芳, 唐晓玲, 孟江辉, 等. 桂中坳陷上古生界页岩气保存条件[J]. 石油与天然气地质, 2014, 35(4): 534-541.
PAN Renfang, TANG Xiaoling, MENG Jianghui, et al. Shale gas preservation conditions for the Upper Paleozoic in Guizhong Depression[J]. Oil & Gas Geology, 2014, 35(4): 534-541.
[70] YUAN W, PAN Z, LI X, et al. Experimental study and modelling of methane adsorption and diffusion in shale[J]. Fuel, 2013, 117(10): 509-519.
[71] SCHLOEMER S, KROOSS B. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J]. Geofluids, 2004, 4(1): 81-108.
[72] 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 39(6): 657-667.
KUANG Lichun, TANG Yong, LEI Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
[73] 胡宗全, 童孝华. 川中大安寨段灰岩裂缝分形特征及孔隙结构模型[J]. 成都理工学院学报, 1999, 1(1): 31-33.
HU Zongquan, TONG Xiaohua. Fractal characteristic of fractures and model of pore structure, Daanzai shelly limestone, lower Jurassic, central Sichuan field[J]. Journal of Chengdu University of Technology, 1999, 1(1): 31-33.
[74] 陈世加, 刘超威, 杨跃明, 等. 川中八角场构造大安寨段凝析气藏形成机制再认识[J]. 天然气工业, 2013, 33(9): 1-7.
CHEN Shijia, LIU Chaowei, YANG Yueming, et al. Restudy of the formation mechanism of the Da’anzhai condensate gas reservoir in the Bajiaochang structure, Middle Sichuan Basin[J]. Natural Gas Industry, 2013, 33(9): 1-7.
[75] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11.
YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.
[76] 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-177.
WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-177.
[77] 姜呈馥, 程玉群, 范柏江, 等. 陆相页岩气的地质研究进展及亟待解决的问题: 以延长探区上三叠统延长组长7段页岩为例[J]. 天然气工业, 2014, 34(2): 27-33.
JIANG Chengfu, CHENG Yuqun, FAN Bojiang, et al. Progress in and challenges to geologic research of terrestrial shale in China: A case study from the 7th member of the Upper Triassic Yanchang Formation in the Yanchang Exploration block, Ordos Basin[J]. Natural Gas Industry, 2014, 34(2): 27-33.
[78] 操应长, 葸克来, 朱如凯, 等. 松辽盆地南部泉四段扶余油层致密砂岩储层微观孔喉结构特征[J]. 中国石油大学学报(自然科学版), 2015, 39(5): 7-17.
CAO Yingchang, XI Kelai, ZHU Rukai, et al. Microscopic pore throat characteristics of tight sandstone reservoirs in Fuyu layer of the fourth member of Quantou Formation in southern Songliao Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5): 7-17.
[79] 黄薇, 梁江平, 赵波, 等. 松辽盆地北部白垩系泉头组扶余油层致密油成藏主控因素[J]. 古地理学报, 2013, 15(5): 635-644.
HUANG Wei, LIANG Jiangping, ZHAO Bo, et al. Main controlling factors of tight oil accumulations in the Fuyu Layer of Cretaceous Quantou Formation in northern Songliao Basin[J]. Journal of Palaeogeography, 2013, 15(5): 635-644.
文章导航

/