油气田开发

渤海海域变质岩潜山油藏稀井网高效开发技术

展开
  • 1. 中国海洋石油国际有限公司,北京 100027;
    2. 中海石油(中国)有限公司天津分公司,天津 300459
童凯军(1984-),男,安徽安庆人,硕士,中国海洋石油国际有限公司高级工程师,主要从事油气田开发方面的研究工作。地址:北京市东城区东直门外小街6号海油大厦1701室,邮政编码:100027。E-mail:tongkaijun714@126.com

修回日期: 2016-08-30

  网络出版日期: 2017-07-27

Sparse well pattern and high-efficient development of metamorphic buried hills reservoirs in Bohai Sea area, China

Expand
  • 1. CNOOC International Ltd., Beijing 100027, China;
    2. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China

Revised date: 2016-08-30

  Online published: 2017-07-27

Supported by

中国海洋石油总公司“十二五”重点科技攻关项目(CNOOC-KJ125ZDXM06LTD-02)

摘要

为了实现渤海海域变质岩潜山油藏少井高产开发目标,以JZ251S油田为例,开展储集层裂缝精细描述、双重介质油藏水驱油机理表征、新型井网模式优选、合理开发技术政策制定及稳油控水技术等方面研究,形成变质岩油藏稀井网高效开发关键技术。根据JZ251S潜山油藏特点,开展裂缝各向异性波动方程的正演模拟,验证了窄方位角地震资料对工区裂缝检测的有效性。应用叠前多参数反演和地应力场模拟分别预测了裂缝性储集层的发育部位和裂缝发育方向。基于大尺度三维物理模型及数值模拟,提出了水平井顶底交错立体注采井网新模式;结合开发需求,提出JZ251S油藏合理采油速度控制在3%~4%,油田初期可实施衰竭开发至地层压力水平保持在70%原始地层压力,再进行注水保压开发。结合工区内试采生产资料,模拟了水平井不同的见水模式并形成4种诊断图版,有效指导油田稳油控水措施实施。JZ251S潜山油藏现场实践表明,采用该系列技术,可大幅增加原油产量,提高注水开发效果。图7表3参17

本文引用格式

童凯军, 李波, 戴卫华, 郑浩, 张占女, 程奇, 王建立, 房娜 . 渤海海域变质岩潜山油藏稀井网高效开发技术[J]. 石油勘探与开发, 2017 , 44(4) : 590 -599 . DOI: 10.11698/PED.2017.04.12

Abstract

In order to achieve the development objective of fewer wells with higher production of metamorphic buried hill reservoirs in the Bohai Sea area, the JZ251S oilfield at Bohai Bay Basin was taken as an example to carry out elaboration of reservoir fracture, quantitative characterization of water displacing oil mechanism at dual-porosity reservoir, optimization of new well pattern mode, formulation of rational development technology policy, maintaining productivity and controlling water rising based on development experience of similar oil reservoir, thus forming the key high efficiency development technique of sparse well pattern of offshore metamorphic rock reservoir. Based on the characteristics of the JZ251S buried hill reservoir, forward simulation of wave equation for fracture anisotropy was carried out, verifying the effectiveness of narrow azimuth seismic data to fractures detection in work area. Multi-parameters prestack inversion and geostress field simulation were applied to forecast location of fractures and direction of fractures respectively. Based on the large-scale 3D physical model and numerical simulation, a new top-bottom interlaced 3D injection-production well deployment model concerning the horizontal well was presented. Considering the production demand, the reasonable oil production rate of JZ251S oil reservoir shall be controlled at 3%-4%, depletion development until that the formation pressure level maintains at 70% of initial formation pressure can be implemented for the oil field at the initial stage, and then the development mode of water flooding to keep pressure can be carried out. Considering the pilot production data at the work zone, different water breakthrough models of the horizontal well were simulated to form four diagnosis charts, which help to stabilize oil and control water effectively. The field practice shows that these techniques greatly increase the crude oil output and improve the water-injection development effect.

参考文献

[1] 邹华耀, 赵春明, 尹志军, 等. 渤海湾盆地新太古代结晶岩潜山裂缝发育的露头模型[J]. 天然气地球科学, 2013, 24(5): 879-885.
ZOU Huayao, ZHAO Chunming, YIN Zhijun, et al. Fracture-occurring outcrop model in Neoarchean crystalline rock-buried hill, Bohai Bay Basin, North China[J]. Natural Gas Geoscience, 2013, 24(5): 879-885.
[2] 童凯军, 赵春明, 吕坐彬, 等. 渤海变质岩潜山油藏储集层综合评价与裂缝表征[J]. 石油勘探与开发, 2012, 39(1): 56-63.
TONG Kaijun, ZHAO Chunming, LYU Zuobin, et al. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay[J]. Petroleum Exploration and Development, 2012, 39(1): 56-63.
[3] 张学汝, 陈和平, 张吉昌, 等. 变质岩储集层构造裂缝研究技术[M]. 北京: 石油工业出版社, 1999.
ZHANG Xueru, CHEN Heping, ZHANG Jichang, et al. Techniques of structural fractures study in metamorphic reservoir[M]. Beijing: Petroleum Industry Press, 1999.
[4] 柏松章, 唐飞. 裂缝性潜山基岩油藏开发模式[M]. 北京: 石油工业出版社, 1997.
BAI Songzhang, TANG Fei. The development models of buried hill fractured basement reservoirs[M]. Beijing: Petroleum Industry Press, 1997.
[5] 袁士义, 宋新民, 冉启全. 裂缝性油藏开发技术[M]. 北京: 石油工业出版社, 2004.
YUAN Shiyi, SONG Xinmin, RAN Qiquan. The development techniques of fractured reservoirs[M]. Beijing: Petroleum Industry Press, 2004.
[6] 童凯军, 程奇, 聂玲玲, 等. 变质岩潜山储集层有效性评价[J]. 石油与天然气地质, 2015, 36(5): 780-787.
TONG Kaijun, CHENG Qi, NIE Lingling, et al. Evaluation of effectiveness of metamorphosed basement buried hill reservoirs[J]. Oil & Gas Geology, 2015, 36(5): 780-787.
[7] 彭仕宓, 索重辉, 王晓杰, 等. 整合多尺度信息的裂缝性储层建模方法探讨[J]. 西安石油大学学报(自然科学版), 2011, 26(4): 1-6.
PENG Shimi, SUO Chonghui, WANG Xiaojie, et al. A modeling method for fractured reservoirs using multi-scale information[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2011, 26(4): 1-6.
[8] 薛艳梅, 夏东领, 苏宗富, 等. 多信息融合分级裂缝建模[J]. 西南石油大学学报(自然科学版), 2014, 36(2): 57-63.
XUE Yanmei, XIA Dongling, SU Zongfu, et al. Fracture modeling at different scales based on convergent multi-source information[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(2): 57-63.
[9] CHEN Shuangquan, WANG Shangxu, ZHANG Yonggang, et al. Reservoir prediction using pre-stack inverted elastic parameters[J]. Applied Geophysics, 2009, 6(4): 349-358.
[10] DAI Xiaofeng, GAN Lideng, DU Wenhui, et al. Application of joint elastic impedance inversion in the GD oilfield[J]. Applied Geophysics, 2006, 3(1): 37-41.
[11] 吕坐彬, 赵春明, 霍春亮, 等. 裂缝性潜山变质岩储层地质建模方法: 以锦州25-1S潜山为例[J]. 科技导报, 2010, 28(13): 68-72.
LYU Zuobin, ZHAO Chunming, HUO Chunliang, et al. Geological modeling of fractured buried hill mutation reservoir: With JZ25-1S Buried Hill as an example[J]. Science & Technology Review, 2010, 28(13): 68-72.
[12] 刘建军, 刘先贵, 冯夏庭. 裂缝-孔隙介质油、水两相微观渗流物理模拟[J]. 岩石力学与工程学报, 2003, 22(10): 1646-1650.
LIU Jianjun, LIU Xiangui, FENG Xiating. Physical simulation of water-oil microcosmic flow through fractured porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1646-1650.
[13] 王家禄. 油藏物理模拟[M]. 北京: 石油工业出版社, 2010.
WANG Jialu. Physical simulation of reservoirs[M]. Beijing: Petroleum Industry Press, 2010.
[14] 童凯军, 刘慧卿, 张迎春, 等. 变质岩裂缝性油藏水驱油特征三维物理模拟实验[J]. 石油勘探与开发, 2015, 42(4): 538-544.
TONG Kaijun, LIU Huiqin, ZHANG Yingchun, et al. Three- dimensional physical modeling of waterflooding in metamorphic fractured reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4): 538-544.
[15] 穆龙新, 王瑞峰, 吴向红. 苏丹地区砂岩油藏衰竭式开发特征及影响因素[J]. 石油勘探与开发, 2015, 42(3): 347-351.
MU Longxin, WANG Ruifeng, WU Xianghong. Development features and affecting factors of natural depletion of sandstone reservoirs in Sudan[J]. Petroleum Exploration and Development, 2015, 42(3): 347-351.
[16] 李伟才, 崔连训, 赵蕊. 水动力改变液流方向技术在低渗透油藏中的应用: 以新疆宝浪油田宝北区块为例[J]. 石油与天然气地质, 2012, 33(5): 796-801.
LI Weicai, CUI Lianxun, ZHAO Rui. Using hydrodynamic force to change flow direction in low-permeability oil reservoirs: An example from the Baobei block in Baolang oilfield, Xinjiang[J]. Oil & Gas Geology, 2012, 33(5): 796-801.
[17] CHAN K S. Water control diagnostic plots[R]. SPE 30775, 1995.
文章导航

/