油气勘探

准噶尔盆地春风油田浅薄储集层地震逐级精细预测

  • 束宁凯 ,
  • 汪新文 ,
  • 苏朝光 ,
  • 宋亮 ,
  • 钮学民 ,
  • 李强
展开
  • 1. 中国地质大学(北京)地球科学与资源学院,北京 100083;
    2. 中国石化胜利油田公司物探研究院,山东东营 257022
束宁凯(1993-),女,江苏丹阳人,现为中国地质大学(北京)在读硕士研究生,主要从事构造地质及油气勘探综合研究。地址:北京市海淀区学院路29号,中国地质大学地球科学与资源学院,邮政编码:100083。E-mail:522345876@qq.com 联系作者简介:汪新文(1961-)男,湖北孝感人,中国地质大学(北京)教授,从事盆地油气综合研究。地址:北京市海淀区学院路29号,中国地质大学地球科学与资源学院,邮政编码:100083。E-mail:wxw@cugb.edu.cn。

修回日期: 2016-10-09

  网络出版日期: 2017-07-27

Stepped and detailed seismic prediction of shallow-thin reservoirs in Chunfeng oilfield of Junggar Basin, NW China

  • SHU Ningkai1 ,
  • WANG Xinwen1 ,
  • SU Chaoguang2 ,
  • SONG Liang2 ,
  • NIU Xuemin2 ,
  • LI Qiang2
Expand
  • 1. China University of Geosciences, Beijing 100083, China;
    2. Geophysical Research Institute, Sinopec Shengli Oilfield Company, Dongying 257022, China

Revised date: 2016-10-09

  Online published: 2017-07-27

Supported by

国家科技重大专项(2011ZX05028; 2016ZX05011)

摘要

针对准噶尔盆地春风油田浅薄储集层地震资料信噪比低和分辨率不足等问题,开展针对性的处理、解释技术研究,形成浅薄储集层地震逐级精细预测方法。采用互叠式偏移距分组处理技术,将地震资料的覆盖次数由8次增加至16次,同时经过提频去噪成像等精细处理,局部低信噪比区信噪比提高1.4倍;建立叠前提高分辨率目标处理、叠后子波重构拓频、叠前叠后联合反演的三级预测技术,最终砂体分辨能力由12 m逐步提高至2 m,有效提高了储集层识别精度。浅薄储集层在逐级提频后的资料中反射更为清晰、连续,与实际钻探结果吻合较好,资料具有较好的保幅性,取得了较好的实际应用效果。图11参17

本文引用格式

束宁凯 , 汪新文 , 苏朝光 , 宋亮 , 钮学民 , 李强 . 准噶尔盆地春风油田浅薄储集层地震逐级精细预测[J]. 石油勘探与开发, 2017 , 44(4) : 561 -568 . DOI: 10.11698/PED.2017.04.09

Abstract

In view of the problems of low signal-to-noise ratio and low resolution of seismic data in shallow-thin reservoir in Chunfeng Oilfield of Junggar Basin, stepped and detailed data processing and interpretation technologies are proposed for shallow-thin reservoir prediction. The overlapping type offset packet processing technology can increase seismic fold from 8 to 16 times and increase signal to noise ratio by 1.4 times at local low noise ratio area by fine processing including frequency upgrade and de-noise imaging techniques. This study established three-level prediction techniques including pre-stack improving resolution target processing, post-stack wavelet reconstruction frequency extension, pre-stack and post-stack joint inversion, which can increase sand resolution from 12 m to 2 m and improve the identification accuracy of reservoir efficiently. The shallow-thin reservoirs after frequency extension have continuous and defined reflections, which are well coincided with actual exploration. The seismic data have well ability of preserving amplitude, and achieve good application effects.

参考文献

[1] 宋璠, 杨少春, 苏妮娜, 等. 准噶尔盆地春风油田沙湾组沉积相新认识[J]. 石油实验地质, 2013, 35(3): 238-242.
SONG Fan, YANG Shaochun, SU Nina, et al. New understanding of sedimentary facies of Shawan Formation in Chunfeng Oilfield, Junggar Basin[J]. Petroleum Geology & Experiment, 2013, 35(3): 238-242.
[2] 向奎. 准噶尔盆地车排子地区下切谷沉积体系及有利勘探方向[J]. 中国石油大学学报(自然科学版), 2007, 31(6): 1-6.
XIANG Kui. Entrenched valley depositional system and advantageous exploration direction of Chepaizi area in Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(6): 1-6.
[3] 陈轩, 张尚锋, 张昌民, 等. 准噶尔盆地车排子地区新近系沙湾组层序地层[J]. 新疆石油地质, 2008, 29(1): 65-67.
CHEN Xuan, ZHANG Shangfeng, ZHANG Changmin, et al. Sequence stratigraphy of Neogene Shawan Formation in Chepaizi Area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(1): 65-67.
[4] 王学忠, 杨元亮, 席伟军. 油水过渡带薄浅层特稠油微生物开发技术: 以准噶尔盆地西缘春风油田为例[J]. 石油勘探与开发, 2016, 43(4): 630-635.
WANG Xuezhong, YANG Yuanliang, XI Weijun. Microbial enhanced oil recovery of oil-water transitional zone in thin-shallow extra heavy oil reservoirs: A case study of Chunfeng Oilfield in western margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 630-635.
[5] 杨少春, 孟祥梅, 陈宁宁, 等. 准噶尔盆地车排子地区新近系沙湾组沉积特征[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 20-25.
YANG Shaochun, MENG Xiangmei, CHEN Ningning, et al. Depositional characteristics of Shawan formation in Neogene of Chepaizi area, Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 20-25.
[6] 于正军. 灰质背景下浊积岩储层地震响应特征及识别方法: 以东营凹陷董集洼陷为例[J]. 油气地质与采收率, 2014, 21(2): 95-97.
YU Zhengjun. Seismic response characteristics and recognition method of turbidity under carbonate depositional environment: A case in Dongji sag of Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(2): 95-97.
[7] 张军华, 刘振, 刘炳杨, 等. 强屏蔽层下弱反射储层特征分析及识别方法[J]. 特种油气藏, 2012, 19(1): 23-26.
ZHANG Junhua, LIU Zhen, LIU Bingyang, et al. Analysis and identification of reservoir characteristics of weak reflectors under strong shielding layer[J]. Special Oil & Gas Reservoirs, 2012, 19(1): 23-26.
[8] 汲生珍, 邬兴威, 夏东领. 子波分解与重构技术在储层预测中的应用 [J]. 石油天然气学报, 2013, 35(11): 66-69.
JI Shengzhen, WU Xingwei, XIA Dongling. Application of wavelet decomposition and reconstruction technique in reservoir prediction[J]. Journal of Oil and Gas Technology, 2013, 35(11): 66-69.
[9] DAUBECHIES I. Ten lectures on wavelets[M]. Ladephia: Society for Industrial and Applied Mathemetics, 1992.
[10] 赵爽, 李仲东, 许红梅, 等. 多子波分解技术检测含煤砂岩储层[J]. 天然气工业, 2007, 27(9): 44-47.
ZHAO Shuang, LI Zhongdong, XU Hongmei, et al. Using multiple wavelet decomposition technique to detect the sandstone reservoir with coal layer[J]. Natural Gas Industry, 2007, 27(9): 44-47.
[11] LEBMN J, VEAERLL M. Balanced multi-wavelets theory and design[J]. IEEE Transactions on Signal Processing, 1997, 46(4): 1119-1125.
[12] 李曙光, 徐天吉, 唐建明, 等. 基于频率域小波的地震信号多子波分级及重构[J]. 石油地球物理勘探, 2009, 44(6): 675-679.
LI Shuguang, XU Tianji, TANG Jianming, et al. Seismic signal multi-wavelet decomposition and reconfiguration based on wavelet in frequency domain[J]. Oil Geophysical Prospecting, 2009, 44(6): 675-679.
[13] 何胡军, 王秋雨, 程会明. 基于匹配追踪算法子波分解技术在薄互层储层预测中的应用[J]. 物探化探计算技术, 2010, 32(6): 641-644.
HE Hujun, WANG Qiuyu, CHENG Huiming. The application of wavelet decomposition technique based on matching pursuit algorithm in thin in ter-bedded reservoir prediction[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(6): 641-644.
[14] 佘刚, 周小鹰, 王箭波. 多子波分解与重构法砂岩储层预测[J]. 西南石油大学学报, 2013, 35(1): 19-27.
SHE Gang, ZHOU Xiaoying, WANG Jianbo. Prediction of sand reservoir with multi-wavelet seismic trace decomposition and reconstruction[J]. Journal of Southwest Petroleum Institute, 2013, 35(1): 19-27.
[15] 胡英, 张东, 袁建征, 等. Laplace-Fourier域多尺度高效全波形反演方法[J]. 石油勘探与开发, 2015, 42(3): 338-346.
HU Ying, ZHANG Dong, YUAN Jianzheng, et al. An efficient multi-scale waveform inversion method in Laplace-Fourier domain[J]. Petroleum Exploration and Development, 2015, 42(3): 338-346.
[16] 胡华锋, 印兴耀, 吴国忱. 基于贝叶斯分类的储层物性参数联合反演方法[J]. 石油物探, 2012, 51(3): 225-232.
HU Huafeng, YIN Xingyao, WU Guochen. Joint inversion of petrophysical parameters based on Bayesian classification[J]. Geophysical Prospecting for Petroleum, 2012, 51(3): 225-232.
[17] 刘百红, 李建华, 魏晓东, 等. 随机反演在储层预测中的应用[J]. 地球物理学进展, 2009, 24(2): 581-589.
LIU Baihong, LI Jianhua, WEI Xiaodong, et al. The application of stochastic seismic inversion in reservoir prediction[J]. Progress in Geophysics, 2009, 24(2): 581-589.
文章导航

/