通过室内实验和理论分析,研究了不同温度、压力条件下添加碳酸钙前后海泡石水基钻井液对不同渗透性地层的封堵性能,论证将碳酸钙作为堵漏剂添加到海泡石钻井液中的可行性。在实验温度为27~204 ℃、实验压力为
[1] GROWCOCK F. How to stabilize and strengthen the wellbore during drilling operation[EB/OL]. [2016-06-10]. http://www.spe.org/dl/docs/ 2010/FredGrowcock.pdf.
[2] COOK J, GROWCOCK F, GUO Q, et al. Stabilizing the wellbore to prevent lost circulation[J]. Oilfield Review, 2011, 23(4): 26-35.
[3] ALTUN G, OSGOUEI A E. Investigation and remediation of active-clay contaminated sepiolite drilling muds[J]. Applied Clay Science, 2014, 102: 238-245.
[4] AL-MALKI N, POURAFSHARY P, AL-HADRAMI H, 等. 采用海泡石纳米颗粒控制膨润土基钻井液性能[J]. 石油勘探与开发, 2016, 43(4): 656-661.
AL-MALKI N, POURAFSHARY P, AL-HADRAMI H, et al. Controlling bentonite-based drilling mud properties using sepiolite nanoparticles[J]. Petroleum Exploration and Development, 2016, 43(4): 656-661.
[5] ALTUN G, OSGOUEI A E, OZYURTKAN M H. An alternate mud proposal to minimise borehole instability[R]. IPTC 17871, 2014.
[6] OSGOUEI A E. Controlling rheological and filtration properties of sepiolite based drilling fluids under elevated temperatures and pressures[D]. Istanbul: Istanbul Technical University, 2010.
[7] API. Recommended practice for field testing water-based drilling fluids: API RP 13B-1[S]. Washington: API, 2004.
[8] DAVIS N, MIHALIK P, LUNDIE P R, et al. New permeability plugging apparatus procedure addresses safety and technology issues[R]. SPE 52815-MS, 1999.
[9] DICK M A, HEINZ T J, SVOBODA C F, et al. Optimizing the selection of bridging particles for reservoir drilling fluids[R]. SPE 58793-MS, 2000.
[10] ZHANG Jinbo, YAN Jienian. New theory and method for optimizing the particle size distribution of bridging agents in drilling fluids[J]. Acta Petrolei Sinica, 2004, 25(6): 88-91, 95.
[11] GÜVEN N, PANFILL D J, CARNEY L L. Comparative rheology of water based drilling fluids with various clays[R]. SPE 17571, 1988.