考虑致密储集层岩石及流体可压缩性和基质中流体的非线性渗流,建立了体积压裂致密储集层跨尺度渗流离散裂缝数值模拟模型,对模型进行了验证并进行了应用实例分析。模型采用两点流动近似方法计算传导率,并引入“星形-三角形”转换算法消除裂缝相交处的极细小网格,改善了计算稳定性。在时间域内采用全隐式离散,模型求解采用自动微分方法,提高了建模效率和计算精度。采用Eclipse软件模拟结果及新疆油田某致密储集层1口长体积压裂水平井的实际生产数据验证了模型的可靠性。实际应用结果表明,所建立模型能成功模拟大规模复杂缝网发育的储集层;缝网改造区越大,水平井产能越高;裂缝密度平面分布差异性及连通程度是影响致密油平面动用非均匀性的关键因素。图12参25
A discrete fracture model for multi-scale flow in large-scale fractured tight oil reservoirs is proposed considering the compressibility of reservoir rock and fluid, and the non-linear flow in the tight matrix. Validation of the model is performed, followed by the field application of the model. The two-point flux-approximation scheme is adopted in the model to calculate conductivity, and small grids at the fracture intersections are eliminated by the “star-delta” transformation method to improve the computational stability. The fully implicit discretization scheme is performed on the temporal domain. Automatic differentiation technique which can improve model establishment efficiency and computational accuracy is applied in the model to solve the numerical model. The model is validated with the simulation results of Eclipse and the historical production data of a long fractured horizontal well in a tight oil reservoir in Xinjiang oilfield. Simulation results of a field-scale reservoir show that the model proposed can simulate reservoirs with large-scale complex fracture systems; well productivity is positively correlated with the scale of the stimulated reservoir volume, and the difference in planar fracture density and fracture connectivity are proved to be the key factors that lead to the heterogeneous distribution of remaining oil in tight oil reservoirs.
[1] KLIMKOWSKI L, NAGY S. Key factors in shale gas modeling and simulation[J]. Archives of Mining Sciences, 2014, 59(4): 987-1004.
[2] RUBIN B. Accurate simulation of non-Darcy flow in stimulated fractured shale reservoirs[R]. SPE 132093, 2010.
[3] SAPUTELLI L, LOPEZ C, CHACON A, et al. Design optimization of horizontal wells with multiple hydraulic fractures in the Bakken Shale[R]. SPE 167770, 2014.
[4] MIRZAEI M, CIPOLLA C L. A workflow for modeling and simulation of hydraulic fractures in unconventional gas reservoirs[R]. SPE 153022, 2012.
[5] 姚军, 王子胜, 张允, 等. 天然裂缝性油藏的离散裂缝网络数值模拟方法[J]. 石油学报, 2010, 31(2): 284-288.
YAO Jun, WANG Zisheng, ZHANG Yun, et al. Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J]. Acta Petrolei Sinica, 2010, 31(2): 284-288.
[6] HOTEIT H, FIROOZABADI A. Compositional modeling of discrete-fractured media without transfer functions by the discontinuous Galerkin and mixed methods[J]. SPE Journal, 2006, 11(3): 341-352.
[7] MOINFAR A, NARR W, HUI M H, et al. Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs[R]. SPE 142295, 2011.
[8] 魏漪, 冉启全, 李冉, 等. 基于分区补给物质平衡法预测致密油压裂水平井动态储量[J]. 石油勘探与开发, 2016, 43(3): 448-455.
WEI Yi, RAN Qiquan, LI Ran, et al. Determination of dynamic reserves of fractured horizontal wells in tight oil reservoirs by multi-region material balance method[J]. Petroleum Exploration and Development, 2016, 43(3): 448-455.
[9] KARIMI-FARD M, DURLOFSKY L J, AZIZ K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators[J]. SPE Journal, 2004, 9(2): 227-236.
[10] SANDVE T H, BERRE I, NORDBOTTEN J M. An efficient multi-point flux approximation method for discrete fracture-matrix simulations[J]. Journal of Computational Physics, 2012, 231(9): 3784-3800.
[11] 李新宁, 马强, 梁辉, 等. 三塘湖盆地二叠系芦草沟组二段混积岩致密油地质特征及勘探潜力[J]. 石油勘探与开发, 2015, 42(6): 763-771, 793.
LI Xinning, MA Qiang, LIANG Hui, et al. Geological characteristics and exploration potential of diamictite tight oil in the second Member of the Permian Lucaogou Formation, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 763-771, 793.
[12] 康毅力, 李前贵, 张箭, 等. 多尺度科学及其在油气田开发中的应用研究[J]. 西南石油大学学报(自然科学版), 2007, 29(5): 177-180.
KANG Yili, LI Qiangui, ZHANG Jian, et al. Multi-scale science and the application in oil and gas field development[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2007, 29(5): 177-180.
[1] ZENG B, CHENG L, LI C. Low velocity non-linear flow in ultra-low permeability reservoir[J]. Journal of Petroleum Science and Engineering, 2011, 80(1): 1-6.
[2] 王斐, 岳湘安, 王雯靓, 等. 润湿性对模拟原油微尺度流动和渗流的影响[J]. 石油学报, 2010, 31(2): 302-305.
WANG Fei, YUE Xiang’an, WANG Wenliang, et al. Influence of wettability on micro-scale flow and seepage characteristics of simulated crude oil[J]. Acta Petrolei Sinica, 2010, 31(2): 302-305.
[3] 杨仁锋, 姜瑞忠, 刘世华, 等. 特低渗透油藏非线性渗流数值模拟[J]. 石油学报, 2011, 32(2): 299-306.
YANG Renfeng, JIANG Ruizhong, LIU Shihua, et al. Numerical simulation of nonlinear seepage in ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(2): 299-306.
[4] PEACEMAN D W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability[J]. SPE Journal, 1983, 23(3): 531-543.
[5] CAUMON G, COLLON-DROUAILLET P, VESLUD C L C D, et al. Surface-based 3D modeling of geological structures[J]. Mathematical Geosciences, 2009, 41(8): 927-945.
[6] MUSTAPHA H. A Gabriel-Delaunay triangulation of 2D complex fractured media for multiphase flow simulations[J]. Computational Geosciences, 2014, 18(6): 989-1008.
[7] JUANES R, SAMPER J, MOLINERO J. A general and efficient formulation of fractures and boundary conditions in the finite element method[J]. International Journal for Numerical Methods in Engineering, 2002, 54(12): 1751-1774.
[8] SANDVE T H. Multiscale simulation of flow and heat transport in fractured geothermal reservoirs[D]. Bergen: University of Bergen, 2012.
[9] LAMPE V. Modelling fluid flow and heat transport in fractured porous media[D]. Bergen: University of Bergen, 2013.
[10] MARGOLIN L G, SHASHKOV M, SMOLARKIEWICZ P K. A discrete operator calculus for finite difference approximations[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3): 365-383.
[11] BONELLE J, ERN A. Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, 48(2): 553-581.
[12] 李翔, 仲卫涛, 钱积新. 化工过程优化中的自动微分法[J]. 石油学报(石油加工), 2001, 17(6): 79-83.
LI Xiang, ZHONG Weitao, QIAN Jixin. Automatic differentiation in chemical engineering process optimization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(6): 79-83.
[13] NEIDINGER R D. Introduction to automatic differentiation and MATLAB object-oriented programming[J]. Siam Review, 2010, 52(3): 545-563.