To solve the problem of poor fracture identifying effect on electrical logging in oil-based mud, the application of acoustic logging to the quantitative characterisation of fractures is expanded from three aspects, namely, Stoneley waves, longitudinal and transverse waves and cross dipole acoustic waves, and a fracture logging evaluation model closely related to production capacity is established considering the radial extension characteristics of fractures. The Stoneley reflection coefficient is used to determine fractures locations to help detect fractures during normal micro-resistivity imaging logging. Based on the experiment on the relationship between fracture width and acoustic attenuation coefficient, empirical formulae for calculating fracture width have been established by primary wave and shear wave energy information considering the effect of porosity. The new parameters, including spectrum correlation coefficient and energy difference from cross dipole array acoustic logging data, can be used for fractures evaluation. The more developed the fractures are, the greater the energy difference becomes, and the smaller the spectrum correlation coefficient is, the higher the production is. The fracture effective evaluation parameters can be separated into two components, specified as the degree of fracture vertical opening and radial extension. Combining the conventional logging and array acoustic logging (including cross dipole array acoustic logging), a fracture radial extension evaluation model is presented closely related to productivity.
[1] 屈海洲, 张福祥, 王振宇, 等. 基于岩心-电成像测井的裂缝定量表征方法: 以库车坳陷ks2区块白垩系巴什基奇克组砂岩为例[J]. 石油勘探与开发, 2016, 43(3): 425-432.
QU Haizhou, ZHANG Fuxiang, WANG Zhenyu, et al. Quantitative fracture evaluation method based on core-image logging: A case study of Cretaceous Bashijiqike Formation in ks2 well area, Kuqa depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 425-432.
[2] 张荣虎, 张惠良, 马玉杰, 等. 特低孔特低渗高产储层成因机制: 以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1): 75-82.
ZHANG Ronghu, ZHANG Huiliang, MA Yujie, et al. Origin of extra low porosity and permeability high production reservoirs: A case from Bashijiqike reservoir of Dabei 1 oil field, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1): 75-82.
[3] 张惠良, 张荣虎, 杨海军, 等. 超深层裂缝-孔隙型致密砂岩储集层表征与评价: 以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2): 158-167.
ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: A case study of Cretaceous Bashjiqike Formation in Kelasu tectnic zone in Kuqa foreland basin[J]. Petroleum Exploration and Development, 2014, 41(2): 158-167.
[4] 周新桂,操成杰,袁嘉音. 储层构造裂缝定量预测与油气渗流规律研究现状和进展[J]. 地球科学进展, 2003, 18(3): 398-404.
ZHOU Xingui, CAO Chengjie, YUAN Jiayin. The research actuality and major progresses on the quantitative forecast of reservoir fractures and hydrocarbon migration law[J]. Advance in Earth Sciences, 2003, 18(3): 398-404.
[5] 丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advance in Earth Sciences, 2015, 30(7): 737-750.
[6] 赖锦, 王贵文, 孙思勉, 等. 致密砂岩储层裂缝测井识别评价方法研究进展[J]. 地球物理学进展, 2015, 30(4): 1712-1724.
LAI Jin, WANG Guiwen, SUN Simian, et al. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs[J]. Progress in Geophysics, 2015, 30(4): 1712-1724.
[7] 卢毓周, 魏斌, 李彬. 常规测井资料识别裂缝性储层流体类型方法研究[J]. 地球物理学进展, 2004, 19(1): 173 -178.
LU Yuzhou, WEI Bin, LI Bin. A study on fluid type identification of fracture reservoir by using routine well logging data[J]. Progress in Geophysics, 2004, 19(1): 173 -178.
[8] 徐朝晖, 徐怀民, 林军, 等. 常规测井资料识别砂砾岩储集层裂缝技术[J]. 科技导报, 2008, 26(7): 34-37.
XU Zhaohui, XU Huaimin, LIN Jun, et al. Frature identification in glutenite reservoir using conventional logs[J]. Science & Technology Review, 2008, 26(7): 34-37.
[9] 关雎, 李军, 郭秀丽. 塔中地区碳酸盐岩储集层裂缝测井评价[J]. 石油勘探与开发, 1998, 25(4): 84-86.
GUAN Ju, LI Jun, GUO Xiuli. Carbonate reservoir logging evaluation for Tazhong field[J]. Petroleum Exploration and Development, 1998, 25(4): 84-86.
[10] 肖丽, 范晓敏. 利用成像测井资料标定常规测井资料裂隙发育参数的方法研究[J]. 吉林大学学报(地球科学版), 2003, 33(4): 559-563.
XIAO Li, FAN Xiaomin. Study on the method of evaluating fracture intensity from conventional logs calibrated imaging logs[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(4): 559-563.
[1] 高楚桥, 谭廷栋. 用岩石导电效率识别碳酸盐岩储层类型[J]. 石油学报, 2000, 21(5): 32-35.
GAO Chuqiao, TAN Tingdong. Identifying types of carbonate reservoir based on electrical conduction efficiency[J]. Acta Petrolei Sinica, 2000, 21(5): 32-35.
[2] 周红涛, 高楚桥. 塔河油田碳酸盐岩储层类型划分[J]. 石油物探, 2005, 44(1): 37-38, 57.
ZHOU Hongtao, GAO Chuqiao. The types of carbonate reservoir in Tahe Oilfield[J]. Geophysical Prospecting for Petroleum, 2005, 44(1): 37-38, 57.
[3] LIU O Y. Stoneley wave-derived Δ t shear log[R]. Houston: SPWLA Twenty Fifth Annual Logging Symposium, 1984.
[4] 王冠贵. 斯通利波特性及其应用[J]. 江汉石油学院学报, 1985, 9(2): 71-86.
WANG Guangui. Characteristics and applying of Stoneley wave[J]. Journal of Jianghan Petroleum Institute, 1985, 9(2): 71-86.
[5] WINKLER K W, LIU H L, JOHNSON D L. Permeability and borehole Stoneley waves: Comparison between experiment and theory[J]. Geophysics, 1989, 54(1): 66-75.
[6] TANG X M. Dynamic peameability and borehole Stoneley waves: A simplified Biot-Rosenbaum model[J]. Journal of Acoustical Society of America, 1991, 90(3): 1632-1646.
[7] TANG X M, CHENG C H. Fast inversion of formation permeability from Stoneley wave logs using a simplified Biot-Rosenbaum model[J]. Geophysics, 1996, 61(3): 639-645.
[8] 边瑞雪, 邓少贵, 范宜仁, 等. 地层纵横波幅度与裂缝倾角及张开度的关系[J]. 测井技术, 1998, 22(5): 327-331.
BIAN Ruixue, DENG Shaogui, FAN Yiren, et al. Relation between acoustic amplitude and fracture properties[J]. Well Logging Technology, 1998, 22(5): 327-331.
[9] 赵军, 付海成, 张永忠, 等. 横波各向异性在碳酸盐岩裂缝性储集层评价中的应用[J]. 石油勘探与开发, 2005, 32(5): 74-77.
ZHAO Jun, FU Haicheng, ZHANG Yongzhong, et al. Application of shear wave anisotropy in fractural carbonate reservoir evaluation[J]. Petroleum Exploration and Development, 2005, 32(5): 74-77.
[10] TANG X M. Imaging near borehole structure using directional acoustic wave measurement[J]. Geophysics, 2004, 69(6): 1378-1386.
[11] TANG X M, PATTERSON D. Single-well S-wave imaging using multi-component dipole acoustic log data[J]. Geophysics, 2009, 74(6): 211-223.