油气勘探

深层储集层长石溶蚀增孔的物理模拟与定量计算

  • 高志勇 ,
  • 冯佳睿 ,
  • 崔京钢 ,
  • 王晓琦 ,
  • 周川闽 ,
  • 石雨昕
展开
  • 1. 提高石油采收率国家重点实验室,北京 100083;
    2. 中国石油勘探开发研究院,北京 100083
高志勇(1974-),男,天津武清人,中国石油勘探开发研究院高级工程师,主要从事沉积学与油气储集层地质学研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院石油地质实验研究中心,邮政编码:100083。E-mail: gzybox@163.com

收稿日期: 2016-03-03

  修回日期: 2017-03-29

  网络出版日期: 2017-05-26

基金资助

国家科技重大专项“前陆冲断带及复杂构造区地质演化过程、深层结构与储集层特征”(2016ZX05003-001); 中国石油天然气股份有限公司课题(2014E-3209; 2016B-0502; 2016B-0302)

Physical simulation and quantitative calculation of increased feldspar dissolution pores in deep reservoirs

  • GAO Zhiyong ,
  • FENG Jiarui ,
  • CUI Jinggang ,
  • WANG Xiaoqi ,
  • ZHOU Chuanmin ,
  • SHI Yuxin
Expand
  • 1. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;

Received date: 2016-03-03

  Revised date: 2017-03-29

  Online published: 2017-05-26

摘要

以塔里木盆地库车坳陷克拉苏构造带白垩系巴什基奇克组深层储集层为例,开展成岩物理模拟实验研究,定量计算巴什基奇克组砂岩在早期长期浅埋—后期快速深埋地质过程下,长石骨架颗粒的溶蚀率及溶蚀增孔量。运用场发射扫描电镜大面积扫描分析技术,定量计算大北、克深地区实际岩心样品中长石骨架颗粒的溶蚀度及溶蚀增孔量值,实验数值与实际岩心数值相互校验,由此建立了陆相深层较高长石骨架颗粒含量储集层中长石溶蚀增孔量的演化过程模型。定量计算出克深地区长石在早期长期浅埋—后期快速深埋地质过程下,最大溶蚀增孔量为0.86%~2.05%,模拟的埋深超过7 000 m砂岩的长石溶蚀增孔量值稍稍偏大,校准后绝对误差值为0.23%。大北地区次生溶蚀孔隙的贡献者主要是方解石,长石次之,定量计算出该地区长石最大溶蚀增孔量为0.62%~1.48%,模拟埋深超过7 000 m砂岩中长石溶蚀增孔量值稍稍偏大,校准后绝对误差值为0.15%。造成误差的原因有二:①模拟实验代表了深层储集层的均一、理想状态;②实际地质情况下深层储集层的非均质性强,不同地区溶蚀作用强弱存在差异。图5表4参25

本文引用格式

高志勇 , 冯佳睿 , 崔京钢 , 王晓琦 , 周川闽 , 石雨昕 . 深层储集层长石溶蚀增孔的物理模拟与定量计算[J]. 石油勘探与开发, 2017 , 44(3) : 359 -369 . DOI: 10.11698/PED.2017.03.05

Abstract

The physical simulation of diagenesis was conducted for the Cretaceous Bashijiqike Formation deep sandstone reservoir in Kelasu structural belt of Kuqa Depression, Tarim Basin, and the dissolution rate and increased dissolution pores of feldspar matrix grains in such reservoirs were quantitatively calculated in the process from long-term shallow burial in early stage to quick deep burial in late stage. Through the field emission large-area SEM analysis, the dissolution rate and increased dissolution pores of feldspar matrix grains in core samples taken from Dabei and Keshen areas were quantitatively calculated. After the experimental data and the actual core data were cross-checked, the evolution model was established for increased feldspar dissolution pores in deep continental reservoirs with high content of feldspar matrix grains. According to the calculation results, the maximum increased feldspar dissolution pores in Keshen area during the process from long-term shallow burial in early stage to quick deep burial in late stage is by 0.86%-2.05%. The simulated sandstone reservoir with burial depth of more than 7 000 m reveals a larger quantity of increased feldspar dissolution pores, with the absolute error value of 0.23% after calibration. In Dabei area, calcite is the primary contributor to secondary dissolution pores, followed by feldspar. Quantitative calculation shows the maximum increased feldspar dissolution pores in Dabei area to be by 0.62%-1.48%. Similarly, the simulated sandstone reservoir with burial depth of more than 7 000 m reveals a larger quantity of increased feldspar dissolution pores, with the absolute error value of 0.15% after calibration. There are two causes of the experiment errors: One cause is that the simulation experiment uses ideal conditions and the simulation reservoirs are homogeneous; Another one is that deep reservoirs have strong heterogeneity and there are big differences in the dissolution within different areas.

参考文献

[1] 罗平, 裘怿楠, 贾爱林, 等. 中国油气储层地质研究面临的挑战和发展方向[J]. 沉积学报, 2003, 21(1): 142-147.
LUO Ping, QIU Yi’nan, JIA Ailin, et al. The present challenges of Chinese petroleum reservoir geology and research direction[J]. Acta Sedimentologica Sinica, 2003, 21(1): 142-147.
[2] 罗孝俊, 杨卫东, 李荣西, 等. pH值对长石溶解度及次生孔隙发育的影响[J]. 矿物岩石地球化学通报, 2001, 20(2): 103-107.
LUO Xiaojun, YANG Weidong, LI Rongxi, et al. Effects of pH on the solubility of the feldspar and the development of secondary porosity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(2): 103-107.
[3] 顾家裕, 方辉, 贾进华. 塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征[J]. 沉积学报, 2001, 19(4): 814-820.
GU Jiayu, FANG Hui, JIA Jinhua. Diagenesis and reservoir characteristics of Cretaceous braided delta sandbody in Kuqa depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2001, 19(4): 814-820.
[4] 马玉杰, 谢会文, 蔡振忠, 等. 库车坳陷迪那2气田地质特征[J]. 天然气地球科学, 2003, 14(5): 173-176.
MA Yujie, XIE Huiwen, CAI Zhenzhong, et al. The geology feature of Dina 2 gas field, Kuche Depression[J]. Natural Gas Geoscience, 2003, 14(5): 173-176.
[5] 徐论勋, 王宏伟, 林克相, 等. 库车坳陷克依构造带巴什基奇克组储层特征[J]. 西南石油学院学报, 2005, 27(6): 15-19.
XU Lunxun, WANG Hongwei, LIN Kexiang, et al. Reservoir characteristics of Bashijiqike formation Keyi tectonic belt Kuche depression[J]. Journal of Southwest Petroleum Institute, 2005, 27(6): 15-19.
[6] 邹华耀, 郝芳, 柳广弟, 等. 库车冲断带巴什基奇克组砂岩自生高岭石成因与油气成藏[J]. 石油与天然气地质, 2005, 26(6): 786-791.
ZOU Huayao, HAO Fang, LIU Guangdi, et al. Genesis of antigenic kaolinite and gas accumulation in Bashijiqike Fm sandstone in Kuqa thrust belt[J]. Oil and Gas Geology, 2005, 26(6): 786-791.
[7] 钟大康, 朱筱敏. 克拉2 气田储层特征及优质储层形成机理[J]. 天然气工业, 2007, 27(1): 8-11.
ZHONG Dakang, ZHU Xiaomin. Reservoirs characteristics and formation mechanism of high quality reservoirs in Kela-2 gas field[J]. Natural Gas Industry, 2007, 27(1): 8-11.
[8] 张荣虎, 张惠良, 寿建峰, 等. 库车坳陷大北地区下白垩统巴什基奇克组储层成因地质分析[J]. 地质科学, 2008, 43(3): 507-517.
ZHANG Ronghu, ZHANG Huiliang, SHOU Jianfeng, et al. Geological analysis on reservoir mechanism of the Lower Cretaceous Bashijiqike Formation in Dabei area of the Kuqa Depression[J]. Chinese Journal of Geology, 2008, 43(3): 507-517.
[9] 刘春, 张惠良, 韩波, 等. 库车坳陷大北地区深部碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2009, 20(4): 504-512.
LIU Chun, ZHANG Huiliang, HAN Bo, et al. Reservoir characteristics and control factors of deep-burial clastic rocks in Dabei zone of Kuche sag[J]. Natural Gas Geoscience, 2009, 20(4): 504-512.
[10] 沈扬, 马玉杰, 赵力彬, 等. 库车坳陷东部古近系—白垩系储层控制因素及有利勘探区[J]. 石油与天然气地质, 2009, 30(2): 136-142.
SHEN Yang, MA Yujie, ZHAO Libin, et al. Controlling factors of the Paleogene-Cretaceous reservoirs and potential exploration areas in the eastern Kuqa Depression[J]. Oil & Gas Geology, 2009, 30(2): 136-142.
[11] 王波, 张荣虎, 任康绪, 等. 库车坳陷大北—克拉苏深层构造带有效储层埋深下限预测[J]. 石油学报, 2011, 32(2): 212-218.
WANG Bo, ZHANG Ronghu, REN Kangxu, et al. Prediction of the lower limit of burial depth for effective reservoirs in the Dabei-Kelasu deep structural belt of Kuqa Depression[J]. Acta Petrolei Sinica, 2011, 32(2): 212-218.
[12] 张惠良, 张荣虎, 杨海军, 等. 构造裂缝发育型砂岩储层定量评价方法及应用: 以库车前陆盆地白垩系为例[J]. 岩石学报, 2012, 28(3): 827-835.
ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir: A Cretaceous example from Kuqa foreland basin[J]. Acta Petrologica Sinica, 2012, 28(3): 827-835.
[13] SURDAM R C, BOESE S W, CROSSEY L J. The chemistry of secondary porosity[C]//MACDONALD D A, SURDAM R C. Clastic diagenesis. Tulsa: AAPG, 1984.
[14] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic- inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-32.
[15] LOUCKS R G, DODGE M M, GALLOWAY W E. Regional controls on diagenesis and reservoir quality in lower Tertiary sandstones along the Texas Gulf Coast: Part 1.Concepts and principles[C]// MACDONALD D A, SURDAM R C. Clastic diagenesis. Tulsa: AAPG, 1984.
[16] MATHISEN M E. Diagenesis of Plio-Pleistocene nonmarine sandstones, Cagayan Basin, Philippines: Early development of secondary porosity in volcanic sandstones[C]//MACDONALD D A, SURDAM R C. Clastic diagenesis. Tulsa: AAPG, 1984.
[17] TAYLOR T R. The influence of calcite dissolution on reservoir porosity in Miocene sandstones, Picaroon field, offshore Texas Gulf Coast[J]. Journal of Sedimentary Petrology, 1990, 60(3): 322-334.
[18] EHRENBERG S N, JAKOBSEN K G. Plagioclase dissolution related to biodegradation of oil in Brent Group sandstones (Middle Jurassic) of Gullfaks field, northern North Sea[J]. Sedimentology, 2001, 48(4): 703-721.
[19] HASZELDINE R S, WILKINSON M, DARBY D, et al. Diagenetic porosity creation in an overpressured graben[C]//FLEET A J, BOLDY S A. Petroleum geology of northwest Europe, Proceedings of the 5th Conference. London: Geological Society, 1999.
[20] TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
[21] 李汶国, 张晓鹏, 钟玉梅. 长石砂岩次生溶孔的形成机理[J]. 石油与天然气地质, 2005, 26(2): 220-229.
LI Wenguo, ZHANG Xiaopeng, ZHONG Yumei. Formation mechanism of secondary dissolved pores in arcose[J]. Oil & Gas Geology, 2005, 26(2): 220-229.
[22] 杨俊杰, 黄月明, 张文正, 等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发, 1995, 22(4): 82-86.
YANG Junjie, HUANG Yueming, ZHANG Wenzheng, et al. Experimental simulation of acetic acid dissolution of feldspar sandstone[J]. Petroleum Exploration and Development, 1995, 22(4): 82-86.
[23] 何光玉, 卢华复, 杨树锋, 等. 库车中新生代盆地沉降特征[J]. 浙江大学学报(理学版), 2004, 31(1): 110-113.
HE Guangyu, LU Huafu, YANG Shufeng, et al. Subsiding features of the Mesozoic and Cenozoic Kuqa Basin, Northwestern China[J]. Journal of Zhejiang University (Science Edition), 2004, 31(1): 110-113.
[24] 阎福礼, 卢华复, 贾东, 等. 塔里木盆地库车坳陷中、新生代沉降特征探讨[J]. 南京大学学报(自然科学), 2003, 39(1): 31-39.
YAN Fuli, LU Huafu, JIA Dong, et al. The Meso-Cenozoic subsidence features of Kuqa Depression, Tarim Basin[J]. Journal of Nanjing University (Natural Sciences), 2003, 39(1): 31-39.
[25] 高志勇, 崔京钢, 冯佳睿, 等. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制[J]. 石油学报, 2013, 34(5): 867-876.
GAO Zhiyong, CUI Jinggang, FENG Jiarui, et al. An effect of burial compaction on deep reservoirs of foreland basins and its reworking mechanism[J]. Acta Petrolei Sinica, 2013, 34(5): 867-876.
文章导航

/