油气勘探

考虑基质孔缝特征的湖相致密灰岩类型划分--以四川盆地中部侏罗系自流井组大安寨段为例

  • 田泽普 ,
  • 宋新民 ,
  • 王拥军 ,
  • 冉启全 ,
  • 刘波 ,
  • 许启鲁 ,
  • 李扬
展开
  • 1. 北京大学地球与空间科学学院,北京 100871;
    2. 中国石油勘探开发研究院,北京 100083;
    3. 北京大学石油与天然气研究中心,北京 100871;
    4. 中国地质大学(北京),北京 100083
田泽普(1991-),女,湖北潜江人,北京大学与中国石油勘探开发研究院联合培养在读博士,主要从事碳酸盐岩储集层综合研究和致密油开发地质研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院数据中心617室,邮政编码:100083。E-mail:tianzepu1991@163.com

收稿日期: 2016-02-29

  修回日期: 2017-02-08

  网络出版日期: 2017-05-22

基金资助

国家自然科学基金“深部碳酸盐岩油气储集层原位溶蚀模拟实验研究”(41272137); 中国石油勘探开发研究院院级项目“四川盆地侏罗系大安寨段致密油储层模式与地质综合评价研究”(2016yj01)

Classification of lacustrine tight limestone considering matrix pores or fractures: A case study of Da’anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin, SW China

  • TIAN Zepu ,
  • SONG Xinmin ,
  • WANG Yongjun ,
  • RAN Qiquan ,
  • LIU Bo ,
  • XU Qilu ,
  • LI Yang
Expand
  • 1. School of Earth & Space Sciences, Peking University, Beijing 100871, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    3. Oil & Gas Research Center, Peking University, Beijing 100871, China;
    4. China University of Geosciences, Beijing 100083, China

Received date: 2016-02-29

  Revised date: 2017-02-08

  Online published: 2017-05-22

摘要

为提高致密储集层甜点预测的准确度与精度,根据储集层基质孔缝特征及其与岩石组构的关系,将四川盆地中部侏罗系自流井组大安寨段岩性进行细分,据此讨论不同岩性的物性、含油性特征及其对产能特征的影响。大安寨段灰岩中发育大量、多类型的微-纳米孔缝。以介壳为主的生屑、方解石/白云石晶粒以及硅酸盐矿物为影响储集层基质孔缝的三端元组构。据此将研究区灰岩划分为10种类型,每种岩石类型对应独立的沉积成岩演化史和孔缝特征。含硅介壳灰岩、含泥介壳灰岩等储集性好;介屑灰岩、泥粉晶介屑灰岩渗流能力强;含泥介壳灰岩含油性好;含硅、含云、含泥介壳灰岩可增加单井产量。岩性差异是造成大安寨段单井产能差异的重要原因。图10表3参36

本文引用格式

田泽普 , 宋新民 , 王拥军 , 冉启全 , 刘波 , 许启鲁 , 李扬 . 考虑基质孔缝特征的湖相致密灰岩类型划分--以四川盆地中部侏罗系自流井组大安寨段为例[J]. 石油勘探与开发, 2017 , 44(2) : 213 -224 . DOI: 10.11698/PED.2017.02.05

Abstract

To improve the prediction accuracy of sweet spots in tight reservoirs, the Da’anzhai Member limestone in Jurassic Ziliujing Formation, central Sichuan Basin was subdivided based on the relationship between characteristics of matrix pores and fractures and rock fabric, and the physical properties and oiliness of every type and the effect of different rock types on the natural productivity were discussed. The limestone reservoir has plenty, multi-type nano- to micro-meter micropores or microfractures. Bioclastics which mainly are bivalve shells, calcite or dolomite crystalline grains and silicate minerals are the three endmembers affecting the development of micropores or microfractures in the limestones. According to this, the limestone in Da’anzhai Member is subdivided into 10 different types, each with unique sedimentary and diagenetic history, and pore and fracture features. The study results show that siliceous bivalve packstone and clay bivalve packstone have better storage property; bivalve-clastic grainstone and bivalve mudstone have higher permeability; clay bivalve packstone has higher oil content; and siliceous shell packstone, dolomitic shell packstone and argillaceous shell packstone can increase the supply ability of reservoirs. Lithologic difference results in different pore-fracture and physical properties, which are the main reason of the different single well productivity in the Da’anzhai Member.

参考文献

[1] 四川油气区石油地质志编写组. 中国石油地质志(卷十): 四川油气区[M]. 北京: 石油工业出版社, 1989.
Compilation Group of Petroleum Geology of Sichuan Oil-gas District. Petroleum geology of China (Vol.10): Sichuan oil-gas district[M]. Beijing: Petroleum Industry Press, 1989.
[2] 梁狄刚, 冉隆辉, 戴弹申, 等. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J]. 石油学报, 2011, 32(1): 8-17.
LIANG Digang, RAN Longhui, DAI Danshen, et al. A re-recognition of the prospecting potential of Jurassic large-area and non-conventional oils in the central-northern Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 8-17.
[3] 强子同, 韩耀文, 郭一华. 碳酸盐岩成岩圈闭与四川的油气勘探[J]. 西南石油学院学报, 1981, 3(4): 25-37.
QIANG Zitong, HAN Yaowen, GUO Yihua. The carbonate diagenetic trap and the exploration of oil and gas in Sichuan[J]. Journal of Southwest Petroleum Institute, 1981, 3(4): 25-37.
[4] 陶士振, 邹才能, 庞正炼, 等. 湖相碳酸盐岩致密油形成与聚集特点: 以四川盆地中部侏罗系大安寨段为例[C]//中国地球物理学会. 中国地球物理学会第28届年会论文集. 北京: 地球物理学会, 2012: 138.
TAO Shizhen, ZOU Caineng, PANG Zhenglian, et al. Dense petroleum form and accumulation characteristics of the lacustrine carbonate rocks[C]//The Geophysical Society of China. The 28th annual meeting of The Geophysical Society of China. Beijing: The Geophysical Society of China, 2012: 138.
[5] 强子同, 杨植江, 王建民, 等. 大安寨石灰岩的成岩作用与成岩圈闭[J]. 地球化学, 1981, 9(3): 232-241.
QIANG Zitong, YANG Zhijiang, WANG Jianmin, et al. Diagenesis and diagenetic trap of Da’anzhai limestone[J]. Geochimica, 1981, 9(3): 232-241.
[6] 赵辉, 司马立强, 颜其彬, 等. 川中大安寨段裂缝评价及储层产能预测方法[J]. 测井技术, 2008, 32(3): 277-280.
ZHAO Hui, SIMA Liqiang, YAN Qibin, et al. Assessment of fracture and method of production forecast of Da’anzhai reservoir[J]. Well Logging Technology, 2008, 32(3): 277-280.
[7] 倪超, 郝毅, 厚刚福, 等. 四川盆地中部侏罗系大安寨段含有机质泥质介壳灰岩储层的认识及其意义[J]. 海相油气地质, 2012, 17(2): 45-56.
NI Chao, HAO Yi, HOU Gangfu, et al. Cognition and significance of Lower Jurassic Da’anzhai organic muddy shell limestone reservoir in central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2012, 17(2): 45-56.
[8] 郑荣才, 何龙, 梁西文, 等. 川东地区下侏罗统大安寨段页岩气(油)成藏条件[J]. 天然气工业, 2013, 33(12): 30-40.
ZHENG Rongcai, HE Long, LIANG Xiwen, et al. Forming conditions of shale gas(oil) plays in the Lower Jurassic Da’anzhai member in the eastern Sichuan Basin[J]. Natural Gas Industry, 2013, 33(12): 30-40.
[9] 陈世加, 张焕旭, 路俊刚, 等. 四川盆地中部侏罗系大安寨段致密油富集高产控制因素[J]. 石油勘探与开发, 2015, 42(2): 186-193.
CHEN Shijia, ZHANG Huanxu, LU Jungang, et al. Controlling factors of Jurassic Da’anzhai Member tight oil accumulation and high production in central Sichuan Basin, SW China[J]. Petroleum Exploration and development, 2015, 42(2): 186-193.
[10] 王当奇. 对川北地区大安寨段沉积环境及找油意义的认识[J]. 石油实验地质, 1983, 5(3): 170-176.
WANG Dangqi. Cognition on the sedimentary environment of Da’anzhai Member, North Sichuan, and its significance in oil exploration[J]. Experimental Petroleum Geology, 1983, 5(3): 170-176.
[11] SLATT R M, O’BRIEN N R. Pore types in the Barnett and Woodford gas shale: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[12] DRISKILL B, WALLS J, DEVITO J, et al. Applications of SEM imaging to reservoir characterization in the Eagle Ford Shale, South Texas, U.S.A.[J]. Aids, 2008, 22(18): 2549-2551.
[13] 刘树根, 孙玮, 李智武, 等. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J]. 天然气地球科学, 2008, 19(3): 293-300.
LIU Shugen, SUN Wei, LI Zhiwu, et al. Tectonic uplifting and gas pool formation since Late Cretaceous Epoch, Sichuan Basin[J]. Natural Gas Geoscience, 2008, 19(3): 293-300.
[14] 胡宗全, 郑荣才, 熊应明. 四川盆地下侏罗统大安寨组层序分析[J]. 天然气工业, 2000, 20(3): 34-37.
HU Zongquan, ZHENG Rongcai, XIONG Yingming. Sequence analysis of Da’anzhai formation of Lower Jurassic in Sichuan Basin[J]. Natural Gas Industry, 2000, 20(3): 34-37.
[15] 马如辉. 利用层序地层学方法预测川东北大安寨段介屑滩分布[J].天然气工业, 2005, 25(2): 58-60.
MA Ruhui. Predicting the distribution of bio-fragmental beaches in Da’anzhai Member in Northeast Sichuan by sequence stratigraphic method[J]. Natural Gas Industry, 2005, 25(2): 58-60.
[16] 王英华. 中国湖相碳酸盐岩[M]. 徐州: 中国矿业大学出版社, 1993.
WANG Yinghua. Lacustrine carbonate rocks in China[M]. Xuzhou: China University of Mining and Technology Press, 1993.
[17] MONACO P. Biological and physical agents of shell concentrations of lithiotis facies enhanced by microstratigraphy and taphonomy, Early Jurassic, Trento Area (Northern Italy)[R]. Vancouver: Intern. Symposium on Jurassic Stratigraphy, 1999: 75-86.
[18] SCHONE B, GIERE O. Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk from the North Fiji Basin, Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(10): 1896-1910.
[19] OLSON J E, LAUBACH S E, LANDER R H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535-1549.
[20] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Structural characterization of gas shales on the micro- and nano-scales[R]. SPE 137693, 2010.
[21] 张河清. 川中侏罗系大安寨组中保存的骨骼文石[J]. 天然气工业, 1984, 4(1): 22-26.
ZHANG Heqing. Skeletal aragonite preserved in Da’anzhai limestone of Jurassic Central Sichuan[J]. Natural Gas Industry, 1984, 4(1): 22-26.
[22] VAN S W, KOMINZ M A, MILLER K G, et al. Late Cretaceous and Cenozoic sea-level estimates: Backstripping analysis of borehole data, onshore New Jersey[J]. Basin Research, 2004, 16(4): 451-465.
[23] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[24] CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
[25] MOUNT J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(12): 432-435.
[26] 张雄华. 混积岩的分类和成因[J]. 地质科技情报, 2000, 19(4): 31-34.
ZHANG Xionghua. Classification and origin of mixosedimentite[J]. Geological Science and Technology Information, 2000, 19(4): 31-34.
[27] MILNER M, MCLIN R, PETRIELLO J. Imaging texture and porosity in mudstones and shale: Comparison of secondary and ion-milled backscatter SEM methods[R]. SPE 138975, 2010.
[28] FLÜGEL E, MUNNECKE A. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. London: Springer, 2004.
[29] 李军, 余俊清. 湖相介形虫古生态学在环境变化研究中的应用[J].盐湖研究, 2002, 10(1): 66-71.
LI Jun, YU Junqing. Application of Lacustrine ostracodes to the study of environmental changes[J]. Journal of Salt Lake Research, 2002, 10(1): 66-71.
[30] HOLMES J A, FOTHERGILL P A, STREET-PERROTT F A, et al. A high-resolution Holocene ostracod record from the Sahel zone of Northeastern Nigeria[J]. Journal of Paleolimnology, 1998, 20(4): 369-380.
[31] SHUKLA V, GREGG J M, SIBLEY D F. Epigenetic dolomitization and the origin of xenotopic dolomite texture: Discussion and reply[J]. Journal of Sedimentary Research, 1984, 54(3): 908-931.
[32] 王丹, 陈代钊, 杨长春, 等. 埋藏环境白云石结构类型[J]. 沉积学报, 2010, 28(1): 17-25.
WANG Dan, CHEN Daizhao, YANG Changchun, et al. Classification of texture in burial dolomite[J]. Acta Sedimentologica Sinica, 2010, 28(1): 17-25.
[33] 薛清太. 高压饱和法在低孔低渗储层孔隙度测试中的应用[J]. 内蒙古石油化工, 2011, 37(8): 289-290.
XUE Qingtai. The application of high pressure saturated method in testing of low permeability reservoir’s porosity[J]. Inner Mongolia Petrochemical Industry, 2011, 37(8): 289-290.
[34] 苏爱国, 程克明, 金伟明. 荧光薄片分析在油气初次运移研究中的应用[J]. 石油勘探与开发, 1991, 18(6): 19-24.
SU Aiguo, CHENG Keming, JIN Weiming. Applications of microscopic fluorescent analysis of source rock slices on primary migration of petroleum[J]. Petroleum Exploration and Development, 1991, 18(6): 19-24.
[35] 彭晖, 刘玉章, 冉启全, 等. 致密油储层不同储渗模式下生产特征研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 133-138.
PENG Hui, LIU Yuzhang, RAN Qiquan, et al. An analysis on performance characteristics of the tight oil reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 133-138.
[36] GALE J F, HOLDER J. Natural fractures in some US shales and their importance for gas production[C]//Petroleum geology: From mature basins to new frontiers: Proceedings of the 7th Petroleum Geology Conference. London: Geological Society, 2010: 2288-2306.
文章导航

/