油气勘探

烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例

  • 王晓梅 ,
  • 张水昌 ,
  • 王华建 ,
  • 苏劲 ,
  • 何坤 ,
  • 王宇 ,
  • 王晓琦
展开
  • 1. 中国石油天然气股份有限公司油气地球化学重点实验室,北京 100083;
    2. 中国石油勘探开发研究院,北京 100083
王晓梅(1977-),女,山东潍坊人,博士,中国石油勘探开发研究院高级工程师,主要从事油气地球化学研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院石油地质实验研究中心,邮政编码:100083。E-mail:wxm01@petrochina.com.cn

收稿日期: 2016-07-04

  修回日期: 2016-12-19

  网络出版日期: 2016-12-30

基金资助

国家科技重大专项(2016ZX05004); 国家自然科学基金(41530317)

Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China

  • WANG Xiaomei ,
  • ZHANG Shuichang ,
  • WANG Huajian ,
  • SU Jin ,
  • HE Kun ,
  • WANG Yu ,
  • WANG Xiaoqi
Expand
  • 1. Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation, Beijing 100083, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;

Received date: 2016-07-04

  Revised date: 2016-12-19

  Online published: 2016-12-30

摘要

以中国元古界下马岭组页岩为例,基于野外露头、镜下观察和地球化学特征分析,对不同尺度的烃源岩非均质性及烃类的微观赋存特征进行研究。岩石圈板块运动和古纬度位置导致烃源岩宏观旋回性和非均质性,天文轨道力控制的气候变化可能是导致烃源岩微观非均质性的最主要原因。因此,烃源岩非均质性是恒定存在的,不仅体现为有机质含量的差异,还包括碎屑物来源和孔隙度的差异。在油气资源评价,尤其是非常规油气资源评价时需要充分考虑烃源岩的非均质性。烃源岩非均质性特征为油气生成、排驱和储集提供了良好的“源储组合”,为估算非常规油气经济可采储量提供了新的参考指标。因此烃源岩非均质性的定量化研究对非常规油气形成机理及资源量预测具有重要意义。图7参28

本文引用格式

王晓梅 , 张水昌 , 王华建 , 苏劲 , 何坤 , 王宇 , 王晓琦 . 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例[J]. 石油勘探与开发, 2017 , 44(1) : 32 -39 . DOI: 10.11698/PED.2017.01.04

Abstract

Taking Mesoproterozoic Xiamaling Formation, Northern China as an example, the heterogeneities of source rock in different scales and hydrocarbon microscopic occurrence are studied based on observation of outcrops and observation with microscopy, and geochemical analysis. The large scale heterogeneities of source rocks are considered to be controlled by the plate movement and paleo-latitude location, while the micro-scale might be controlled by climate changes driven by the astronomical orbit. The constant existence of heterogeneities includes the differences of organic matter, debris sources and porosities. The heterogeneities of source rock should be seriously treated during the evaluation of oil and gas resources, especially the unconventional oil and gas. This kind of heterogeneous source rocks provides excellent source-reservoir assemblage of oil and gas generation, expulsion and accumulation, and new reference indexes for the economic evaluation of unconventional oil and gas. Therefore, quantitative study of the heterogeneity of source rock is of great significance for investigating formation mechanism and resource estimation of unconventional oil and gas.

参考文献

[1] TISSOT B P, WELTE D H. Petroleum formation and occurrence: A new approach to oil and gas exploration[M]. New York: Springer- Verlag, 1978.
[2] BOWKER K A. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
[3] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[4] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[5] GROSJEAN E, LOVE G, STALVIES C, et al. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin[J]. Organic Geochemistry, 2009, 40(1): 87-110.
[6] CRAIG J, THUROW J, THUSU B, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa[J]. Geological Society London Special Publications, 2009, 326(1): 1-25.
[7] BHAT G M, CRAIG J, HAFIZ M, et al. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: An introduction[J]. Geological Society London Special Publications, 2012, 366(1): 1-17.
[8] CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40(1): 1-47.
[9] WAGNER T, HOFMANN P, FLÖGEL S. Marine black shale deposition and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic Ocean[J]. Marine and Petroleum Geology, 2013, 43: 222-238.
[10] ZHANG S C, WANG X M, WANG H J, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences, 2016, 113(7): 1731-1736.
[11] ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 1406-1413.
[12] WU H C, ZHANG S H, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the late Permian[J]. Nature Communications, 2013, 4(9): 2452-2459.
[13] RUHL M, DEENEN M, ABELS H, et al. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK)[J]. Earth and Planetary Science Letters, 2010, 295(1): 262-276.
[14] BECKMANN B, FLOGEL S, HOFMANN P, et al. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response[J]. Nature, 2005, 437(7056): 241-244.
[15] TRABUCHOALEXANDRE J, HAY W W, BOER P L. Phanerozoic environments of black shale deposition and the Wilson Cycle[J]. Solid Earth and Discussions, 2012, 3(1): 29-42.
[16] HOFMANN P, WAGNER T. ITCZ controls on Late Cretaceous black shale sedimentation in the tropical Atlantic Ocean[J]. Paleoceanography, 2011, 26(4): 4223.
[17] CHOUGH S, KIM S, CHUN S. Sandstone/chert and laminated chert/black shale couplets, Cretaceous Uhangri Formation (southwest Korea): Depositional events in alkaline lake environments[J]. Sedimentary Geology, 1996, 104(1): 227-242.
[18] 范文博. 华北克拉通中元古代下马岭组地质特征及研究进展: 下马岭组研究百年回眸[J]. 地质论评, 2015, 61(6): 1383-1406.
FAN Wenbo. Geological features and research progress of the Mesoproterozoic Xiamaling Formation in the North China Craton: A review after nearly one hundred years of study[J]. Geological Review, 2015, 61(6): 1383-1406.
[19] 张水昌, 张宝民, 边立曾, 等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学: 地球科学, 2007, 37(5): 636-643.
ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. The Xiamaling oil shale accumulated by rhodophyta over 800 Ma ago[J]. SCIENCE CHINA Earth Sciences, 2007, 50(4): 527-535.
[20] 王晓琦, 孙亮, 朱如凯, 等. 利用电子束荷电效应评价致密储集层储集空间: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2015, 42(4): 472-480.
WANG Xiaoqi, SUN Liang, ZHU Rukai, et al. Application of charging effects in evaluating storage space of tight reservoirs: A case study from Permian Lucaogou Formation in Jimusar sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 472-480.
[21] 陈建平, 梁狄刚, 张水昌, 等. 泥岩/页岩: 中国元古宙—古生代海相沉积盆地主要烃源岩[J]. 地质学报, 2013, 87(7): 905-921.
CHEN Jianping, LIANG Digang, ZHANG Shuichang, et al. Shale and mudstone: Essential source rocks in the Proterozoic to Paleozoic marine basins in China[J]. Acta Geologica Sinica, 2013, 87(7): 905-921.
[22] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
[23] 宋国奇, 徐兴友, 李政, 等. 济阳坳陷古近系陆相页岩油产量的影响因素[J]. 石油与天然气地质, 2015, 36(3): 463-471.
SONG Guoqi, XU Xingyou, LI Zheng, et al. Factors controlling oil production from Paleogene shale in Jiyang depression[J]. Oil and Gas Geology, 2015, 36(3): 463-471.
[24] LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[25] 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196.
JIANG Zaixing, ZHANG Wenzhao, LIANG Chao, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196.
[26] 魏威, 王飞宇. 页岩油气资源体系成藏控制因素与储层特征[J]. 地质科技情报, 2014, 33(1): 150-155.
WEI Wei, WANG Feiyu. The controlling factors of shale resource system and reservoir characteristics[J]. Geological Science and Technology Information, 2014, 33(1): 150-155.
[27] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[28] MARTIN R, BAIHLY J D, MALPANI R, et al. Understanding production from Eagle Ford-Austin Chalk System[R]. SPE145117, 2011.
文章导航

/