三元复合驱注入段塞组合物理模拟实验研究

李建路，何先华，高峰，鹿守亮，曹铁

（中国石油大庆油田勘探开发研究院）

摘要：选取分子量为1200万、2000万的聚合物，通过室内物理模拟实验，研究三元复合驱注入段塞组合、浓度、大小对驱替效果的影响。结果表明：在化学剂用量相同的情况下，高浓度小段塞的采收率比低浓度大段塞高，高分子量聚合物的驱油效果比低分子量聚合物更明显。不同浓度和后续段塞优化驱油实验的结果表明，指聚合物、碱、表面活性剂比成段段塞（聚合物、碱、表面活性剂）注水比油不仅可以提高驱油剂的注入地，注水剂的浓度、段塞大小变化在一定范围内对驱油效果影响不大。图1表4参6

关键词：物理模拟实验；三元复合驱；段塞组合；段塞聚合物浓度；驱油效率

中图分类号：TE 357.46 文献标识码：A

1 实验

1.1 仪器及岩心模型、试剂

实验使用仪器为旋流槽装置（TEXAS-500），美国德克萨斯大学生产；布氏黏度计（BROOKHILL），美国Brookfield公司生产；岩心装置（DY-1），江苏海洋石油仪器厂生产；平滑率（LP-20C），北京星达技术开发公司生产。

根据相似准则，选用两维纵向非均质正韵律人造岩心模型和天然岩心。人造岩心模型尺寸为300mm×300mm×30mm，渗透率变异系数为0.72（渗透率分别为900mD和1300mD），分布，中，下三层，每层厚10mm。天然岩心直径为25mm，长100mm，渗透率为800~1500mD。

实验试剂包括水、油及化学剂。

实验用水有三种：一种是实验室配制的模拟原油；一种是实验室配制的模拟地层水，总矿化度为8778mg/L，用于模型饱和水。另一种是来自大庆油田采油生产的油田注入水，总矿化度为3722mg/L，用于样品配制和实验驱替。

实验用油是根据地下的原油黏度自行配制的模拟油，是以取自矿场的脱水油和航空煤油按一定比例配制而成，黏度为9~10mPa·s。

实验用表面活性剂为大庆油田管理局实业公司生产。实验用聚合物为两种，一种是大庆油田化工总厂生产的中分子量聚合物（分子量1200万），另一种是北京恒聚油田化工有限公司生产的高分子量聚合物（分子量2000万）。所用化学试剂NaOH、NaCl、CaCl2、MgCl2、H2O、Na2SO4、NaHCO3为固体分析试剂纯。

1.2 实验方法及条件

物理模拟驱油实验分为6个步骤：①在常温下抽真空、饱和水、测定孔隙体积，建立束缚水。②边加饱和水边加水至45°C，至饱和水2PV，含油饱和度为70%以上结束；③在45°C下进行一次水驱，至注入体系2PV，模型出口含水98%以上结束；④在45°C下进行化学驱，按实验方案设计注入，⑤在45°C下进行二次水驱，至模型出口含水98%以上结束；⑥计算各阶段采收率及总采收率。注入速率为0.3~0.6mL/min。

2 实验结果与讨论

2.1 三元复合驱段塞大小对驱替效果的影响

选取两种分子量（1200万、2000万）的聚合物，采用目前油田矿场试验的注水方式，完成了一组三元体系高浓度小段塞和低浓度大段塞驱油实验。实验1 的三元体系为：表面活性剂0.2%（wt），碱1.0%（wt），聚合物0.3PV（1.5g/L，高浓度小段塞）；实验2 的三元体系为：表面活性剂0.1%（wt），碱0.6%（wt），聚合物0.6PV（0.8g/L，低浓度大段塞）；实验3 的三元体系为：表面活性剂0.2%（wt），碱1.0%（wt），聚合物0.3PV（1.0g/L，高浓度小段塞）；实验4 的三元体系为：表面活性剂0.2%（wt），碱1.0%（wt），聚合物0.3PV（1.0g/L，高浓度小段塞）；实验5 的三元体系为：表面活性剂0.2%（wt），碱1.0%（wt），聚合物0.3PV（1.0g/L，高浓度小段塞）；
面活性剂 0.1%（wt.），碱 0.6%（wt.），聚合物 0.6PV（0.8g/L，低浓度大段段）实验目的是找出两种聚合物的差异及规律性，给出两者驱油效果的优劣，为今后室内实验及现场试验提供依据，表 1 为实验结果。

表 1 不同三元体系驱油实验结果对比

<table>
<thead>
<tr>
<th>试验序号</th>
<th>模型编号</th>
<th>气测渗透率（md）</th>
<th>水驱 采收率（%）</th>
<th>化学驱采收率所提高度（%）</th>
<th>总采收率（%）</th>
<th>聚合物分子量（10^-5）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ks7-20</td>
<td>913</td>
<td>46.85</td>
<td>25.84</td>
<td>70.69</td>
<td>0.0048</td>
</tr>
<tr>
<td>2</td>
<td>Ks7-2-6</td>
<td>1328</td>
<td>42.00</td>
<td>22.87</td>
<td>64.87</td>
<td>0.0032</td>
</tr>
<tr>
<td>3</td>
<td>Ks7-2-6</td>
<td>1385</td>
<td>42.21</td>
<td>25.85</td>
<td>69.14</td>
<td>0.0032</td>
</tr>
<tr>
<td>4</td>
<td>Ks7-2-15</td>
<td>1280</td>
<td>42.11</td>
<td>23.68</td>
<td>65.79</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

实验 1.2 使用分子量为 1200 万的聚合物，实验结果表明，高浓度油段的采收率比低浓度大段段高；实验 3.4 使用分子量为 2000 万的聚合物，实验结果同样显示出，高浓度油段的采收率比低浓度大段段高。总之，不同分子量聚合物的驱油效果结果都表明高浓度油段的采收率比低浓度大段段高，而且高分子量聚合物的采收率比低分子量聚合物的明显提高。

在化学剂用量相近的条件下，高浓度油段的采收率比低浓度大段段高，造成两者差异的主要原因是高浓度油段的采收率比低浓度大段段高，波及能力强，波及体积大。同时高浓度油段中的聚合物浓度比低浓度大段段的聚合物浓度高，抗稀释能力强。

2.2 前置及后续段优化驱油实验

制备了不同前置油实验方案，为实验中采用相同的化学剂配制的相同分子量的聚合物和相同的化学剂配制的化学剂用配成的实验，以不同的注入方式完成。

方案一包括实验 1.2，实验 1 注入三元体系（表面活性剂 0.2%（wt.）+ 碱 1.0%（wt.）+ 聚合物（1.5 g/L））段油 0.3PV，后续聚合物保护段 0.2PV（0.8 g/L）。实验 2 将实验 1 的三元体系中的聚合物段油 0.2PV，与碱+表面活性剂作为双段段，具体为：聚合物（1.5 g/L）段油 0.3PV，碱 1.0%（wt.）+ 表面活性剂 0.2%（wt）二元段段 0.3PV，后续聚合物保护段 0.2PV（0.8 g/L）。对比方案一的实验结果（见表 2），实验 1.2 化学剂用量相同，注入方式不同，采收率提高值不同，实验 2 将三元体系中的聚合物段油 0.2PV 与碱+表面活性剂二元段段作为双段段注入，比实验 1 将三元体系作主段段合注的采收率高。

方案二包括实验 3.4，实验 4 注入三元体系（表面活性剂 0.2%（wt.）+ 碱 1.0%（wt.）+ 聚合物（1.0 g/L））段油 0.3PV。实验 3 的前置聚合物（1.5 g/L）段油 0.1PV，后续聚合物保护段 0.4PV（0.8 g/L），实验 4 的前置聚合物（1.5 g/L）段油 0.2PV，后续聚合物保护段 0.2PV（0.8 g/L）。实验结果（见表 2），二者采收率相差 1.75%，说明聚合物前置段段增大气油比对改善驱油效果有利。在聚合物浓度不变时，后续段在一定范围内变化对驱油效果影响不大，一般选择 0.2PV 即可。

2.3 双段段注入驱油实验

表 3 所示是将三元体系中的聚合物拆分出来，配制成浓度为 1.0g/L，2g/L，5g/L 的溶液，将碱、表面活性剂配制成 0.3PV，（碱 1.0%（wt.）+ 表面活性剂 0.2%（wt.），在均注入 0.3PV 段油聚合物、后续聚合物保护段油滴不大的条件下完成的一组实验。从表 3 可见，在表面活性剂、碱化学剂用量不变的情况下，只改变聚合物前置段油的浓度，采收率随着聚合物浓度的降低而降低。前置段油聚合物浓度应不低于 1.2g/L。

表 2 不同浓度聚合物段油段油实验结果

<table>
<thead>
<tr>
<th>序号</th>
<th>模型编号</th>
<th>气测渗透率（md）</th>
<th>聚合物浓度（g/L）</th>
<th>水驱 采收率（%）</th>
<th>化学驱采收率提高度（%）</th>
<th>总采收率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2ks72-6</td>
<td>1343</td>
<td>1.5</td>
<td>42.86</td>
<td>23.30</td>
<td>66.16</td>
</tr>
<tr>
<td>2</td>
<td>2ks72-7</td>
<td>1365</td>
<td>1.2</td>
<td>42.67</td>
<td>21.33</td>
<td>64.00</td>
</tr>
<tr>
<td>3</td>
<td>2ks72-8</td>
<td>1327</td>
<td>1.0</td>
<td>41.03</td>
<td>19.23</td>
<td>60.26</td>
</tr>
</tbody>
</table>

2.4 天然岩石驱油实验

为了验证人造岩心驱油实验的结果，进行了天然岩石驱油实验（见表 4）。实验 1.2 的三元体系（表面活性剂 0.3%（wt.）+ 碱 1.2%（wt.）+ 聚合物（1.8 g/L））段油 0.3PV；实验 3.4 的三元体系（表面活性剂 0.2%（wt.）+ 碱 1.0%（wt.）+ 聚合物 1.8 g/L 段油 0.3PV；
实验 5.6.7 的三元体系 (表面活剂 0.1% (wt) +碱
0.6% (wt) +聚物 1.8g/L) 段塞 0.3PV; 实验 8.9, 聚合物段塞 (1.8g/L) 0.3PV, 三元系段塞 (表面活剂
0.2% (wt) + 碱 1.0% (wt)) 0.3PV。后续保护段塞均
为 0.2PV。实验结果表明,在聚合物用量不变的条件下,只有
表面活剂浓度为 0.3% (wt), 碱浓度为 1.2% (wt) 时, 才能使化学驱油效率比水驱提高 20%以上; 随着
表面活剂、碱浓度的降低, 化学驱油效率递减; 将三元系段塞中的聚合物挤出进来, 进行双段塞注入, 效果
优于合注。

造成天然岩石与人造岩石驱油效率有差异的原因
主要有两点: ①天然岩石的孔隙结构不规则, 黏土矿物
含量较高, 导致活性剂和碱吸附量增加, 加之三元体系
注入地层后的前缘稀释作用, 使天然岩石驱油效率降
低; ②在碱和表面活性剂用量大时, 界面张力下降快, 随
着碱和表面活性剂用量的降低, 界面张力下降的速
率变慢 (见图 1), 致使在室内驱油过程中三元体系与原
油间的界面张力变化不理想, 从而使驱油效率降低。

3 结论

不同分子量聚合物的驱油实验结果都表明, 高浓
度小段塞比低浓度大段塞的驱油效率高, 而且高分子
量聚合物驱比低分子量聚合物驱效果更明显; 将三元
体系中的聚合物挤出进来与表活剂 + 碱组合的二元段
塞进行双段塞注比三元体系段塞合注的效果好。本
研究得到大庆油田勘探开发研究院廖广志总工
程师、杨振宇主任的大力支持, 在此深表感谢。

参考文献:

第一作者简介: 李建辉 (1965 -), 男, 河北吴桥人, 工程师, 目前从事
三次采油室内实验研究工作, 地址: 黑龙江省大庆市让胡路, 石油勘探
研究院采油研究三室, 邮政编码: 163712; 电话: (0459) 5508885。

Physical modeling of ASP flooding slug combination
LI Jian-lu, HE Xian-hua, GAO Feng, LU Shou-liang, CAO Tie (Daqing Oilfield Company Ltd., Heilongjiang 163712, China)

Abstract: A series of core flooding experiments with two types of HPAM, with molecule weight of 1.2 × 10^5 and 2.0 × 10^5
respectively, were conducted to investigate the effect of the combination mode, concentration and the size of ASP slug on
displacing efficiency. When the amount of chemical matter is the same, the recovery of the higher concentration, smaller slug is
higher than that of the lower concentration, larger slug; and the difference is more obvious as the HPAM with higher molecule
weight is used. The increase of the preflush polymer slug (0.1-0.3PV) is beneficial to displacing efficiency. The post-pulse slug
can be chosen to be 0.2PV because it has no remarkable effect on the displacing efficiency. The results suggest that the two-
slug injection mode (the polymer is separated from the ASP system) would be better than the single slug (alkaline,
surfactant and polymer are in the same slug).

Key words: physical modeling; ASP flooding; slug; slug combination; polymer concentration; displacing efficiency