对油气运聚研究中一些概念的再思考

李明诚

（中国地质大学（北京））

摘要：非均质层中烃类的扩散流和达西流可以同时存在，并可能相互转化。据 Welte 等 1997 年计算，在致密泥岩层中，扩散流和达西流的流速分别为 18 m/Ma 和 15 m/Ma。说明在致密泥岩层中这两种流动几乎没有差别，同时说明了泥岩中的流动也可以用达西公式来表达。通气的渗流流和渗流虽然都是在地下多孔介质中的流动，但前者是油、气在水中上浮，不呈连续相流动，而后者是油、气在连续相中与水一起流动，因此两种流动没有完全的属性，但也能用达西公式表达。而渗流则要求有临界运移饱和度和临界渗透率，并可用达西公式来计算。若发生通气流只取决于油、气与水的密度差，而通气流是二次运移最基本的流动方式。地下油层的存在，油气的渗流运移和渗流运移，但流体是一个有时间尺度的概念。油、气的运移和运移是一个导致物质的原始过程，不能只强调运移较慢的渗流活动而忽视了渗流过程的存在。

关键词：通气运移；扩散流；达西流；浮力流；渗流；渗流；运移；聚井

图中分类号：TE122.1+2 文献标识码：A

1 扩散流与达西流

石油地质学中所指的扩散流主要指在流体差作用下，发生在地下水中的轻烃（C1-C4）分子扩散；达西流主要指在势差作用下，发生在地下多孔介质中流体（油气、水）的体积流动。扩散是单分子的流动，可以在水溶液（10^-9 m）的微孔中发生，是流体在低密度介质中流动的重要方式；而达西流是具有相态的多分子整体流动，是流体在具有较大孔隙和裂缝的岩石中流动的主要方式。

在非均质岩石中，这两种流动可以同时存在，并可相互转换和补充。目前在初次运移的研究中，有更多的学者提出扩散-渗流的扩散模型，认为烃类在泥质岩石微孔中很难进行相态的多分子扩散，而形成渗流模型，从而在高密度波斯下，从干酪根网络中扩散到较大孔隙中，积聚后才能在压力梯度作用下沿较大孔隙和裂缝以渗流方式排出，进入相邻运移段（图1）。煤层气的开采就更加证明这两种流动的转换；先是对层间间势压解吸，使甲烷脱离煤表面进入其微孔（20-100nm），然后甲烷在浓度作用下扩散至煤的裂缝（1-100μm）中，积聚后在压力作用下沿渗流相气体的渗流方式排出。

可见，无论是理论还是实践都证明这两种流动可以相互转换。由此似乎可以推论，在地下岩石中，当扩散流与较大孔隙可以转换为渗流；而发生在较大孔隙的渗流遇到障碍时又可以转换为扩散流。同样，与二次运移过程中，烃类遇到致密的岩石可以扩散流方式运移，而在孔隙性的较好的岩石中以达西流方式运移，即二次运移的烃类可以以不同的流动方式通过致密程度不同的岩石。所以，虽然扩散分可以被控制，但扩散流的扩散作用应有更全面的评价。

在一般的渗透性地层中，虽然扩散流与达西流的流速可以相差 3-4 个数数量级，但在孔隙度为 1%、渗流条件下的运移过程中，扩散流的影响仍然不能忽视。因此，对扩散和运移作用应有更全面的评价。

图1 烃类的扩散-渗流排出模型（据 Mann U, 1994 文献3）
透率为 $1 \times 10^{-9} \text{m}^2/\text{s}$，扩散系数为 $1 \times 10^{-12} \text{m}^2/\text{s}$ 的泥质
d地层中，当流体密度 $0.001 \text{Pa} \cdot \text{s}$，压力梯度为 $1 \text{Pa}/\text{m}$ 时，所产流速约为 $15 \text{m}/\text{Ma}$，扩散流的流速约为 $18 \text{m}/\text{Ma}$ [1]。文献 [5] 用不同的扩散系数、层地孔隙度
d考虑温度对气溶解度和扩散系数的影响分别计算，
得到扩散流通过 $550 \mu \text{m}$ 厚泥岩层的平均流速为 $10 - 100 \text{m}/\text{Ma}$。尽管上述计算
算有害不稳定因素，计算结果会因人出，但还是可以明
在非常致密的地层中，扩散端达西流的流速偏差
大，这种情况下区分它们似乎意义不大。看来，致密
泥岩中的流动也可以用达西公式来描述。

2 浮力流与渗流

烃类的浮力流与渗流虽然都发生在地下多孔介质
d,但二者有很大不同。浮力流是烃类在水介质中的
上浮流，它只取决于烃类与水的密度差，而水是否流动可
以无关，分为自由上浮和有阻上浮[1]；而渗流是在流体
势差作用下，烃类与水一起呈多相或单相流动。

自由上浮是水中的气珠，气泡在浮上过程中不受
任何阻碍。地下自由上浮的气珠，气泡大小与地下
温度、压力、油、气的界面张力有关，还取决于烃类
进入井口的大小、形状和强度。一个最小的微气泡
直径相当于一个胶粒分子大小，约 $0.5 - 1 \mu \text{m}$[8,9]；烃
层中油珠、气泡直径一般为 $50 - 100 \mu \text{m}$[2]；烃体包裹
中的烃类气泡大小也多在 $1 - 10 \mu \text{m}$[10]，可近似代表从
地下水溶液中析出的烃类气泡。地下水迁移通道
而言，烃类气泡直径一般为 $0.5 - 30 \mu \text{m}$，张裂缝的开
度一般大于 $100 \mu \text{m}$，微裂缝的开度也多为 $10 -
20 \mu \text{m}$[11]。可见裂缝是油气自由上浮的有利通道（见图
2）。近年来通过对地
表烃类微渗漏及近地
表相关研究的研究，认
为这是烃类在充
水的裂缝网络中快速
上浮，并与周围沉积物
中粘土相互作用的结
果[9]。这进一步说明
自由上浮可能是广泛
存在的运移模式。

地下温度、压力、岩
石构和和道大小
显著地不断变化，因此油珠、气泡的上浮不可能处处无
阻。一旦上浮受阻，就要待后续烃类补充，直至烃类高
度增大到产生的浮力足以克服因油泡包而产生的气
泡细度小时，才能继续上浮，这就是有阻上浮，所需的

<table>
<thead>
<tr>
<th>浮力流的表达式</th>
<th>[ \Phi = - \rho g Z + \frac{\partial P}{\partial r} + 2\sigma \cos \theta ]</th>
</tr>
</thead>
</table>
| 式中 | $Z$——深度，$m$；$\Phi$——深度单位体积流体的流
| $\rho$——流体密度，$10^3 \text{kg/m}^3$；$g$——重力加速度，$9.8 \text{m/s}^2$；$P$——深
| $\sigma$——烃与水的界面张力，$\text{mN/m}$；$\theta$——烃
| $r$——深度流体层孔半径，$m$。 |
| 该方程不仅可以反映水中的烃流，而且包括了作用
| 于烃类的三种力。因此，用流体势的概念和方程来
| 研究多相渗流问题最为合理和方便。 |

流体总是由高压往低势方向流动，即沿负势梯度
($-\nabla \Phi$) 方向，也就是沿作用力减少的高低等势线
减方向流动，该方向是流动路径最短而功能最少的
方向。可见，连续分布的场中，有无与垂直的连续
分布的力场，而负势度梯度等就于单位体积流体流
单位距离所受的力($\Phi$)，它是负有方向又有大小的向
能将 ($-\nabla \Phi$) 或 ($\Phi$) 代入达西公式得下式[14]：

| 式中 | $q_H = \frac{KK_{th}}{\mu_H}$ (或 $q_H = \frac{KK_{th}}{\mu_H}$) |
| 式 | $K$——地下岩石的绝对渗透率，$m^2$；$K_{th}$——油、气的相
| $r_H$——油、气的相
| $K_{th}$——油、气的相
| 备：| 在得知该公式中的有关参数后，即可定量计算出
| 渗流的速度和流量。 |

从上述比较可知：浮力流是烃类在水中的上浮，烃
类本身呈断续状流动，而渗流则是在流体势差作用下
烃类与水一起呈连续状流动。正因此，浮力流没有含
烃饱和度和相对渗透率的要求[11]，也能用达西公式
来表述；而渗流则要求有临界运移饱和度和相对渗透

![图 2: 油珠、气泡在饱和水的
流体中上浮（根据文献[2]，修改）](http://www.cnki.net)
3. 幕式运移和幕式充注

地下异常高压烃源层的存在说明地下必然发生幕式排烃。盆地中高压烃体封闭体的存在，断层及裂缝等通道的张开，偶合，二次运移所需浮力和烃饱和度的积蓄，也都说明地下必然发生幕式的二次运移，由此必然导致烃类的幕式充注。这是不容质疑的，似乎也为我们近来含烃体充注体的研究所证实。

通过对含烃体充注体的均－温度、均－压力和所含烃组分的测试和分析，可以获得充注体形成时的各地温、古压力、古高程、古流体对、古流体密度、古温度以及烃类的形成度和组分等宝贵的信息[17]，可用于推断二次运移的方向和充注时期，以及用于烃源对比和成藏演化史的构建，据此目前已成为烃类运移研究中一种重要的方法[17]。但是，在实际应用中，如何把充注体中记录和蕴含的信息和数据真实地提取出来还有相当难度，在取样、测试和参数求取过程中还有许多不确定因素。例如，要把充注体的均－温度与地热温度相对应，首先要把古地热温，将经过压力校正的均－温度与古埋深建立对应关系，再根据各层的沉积速率（有沉积间断要恢复到沉积速率），才能对应出充注体形成和油气运移的地质时期。在此过程中，往往要利用许多回归系数、类比参数和图版进行转换，特别是构造作用、地层非均质性、运移通道的开启、闭合以及油气等许多地质条件的变化，再加上取样层位、类型、数量等方面的限制，影响了分析和解释的真实性和精确性。

正如图3所示的一例，其作者认为：均－温度的包络线呈双峰型，第一峰在110～120℃，对应晚第三纪末，第二峰在130～140℃，对应中白垩末，反映该区最少有两期油气运移。但就此例而言，如果其分析结果无误，作者认为，其真正的地质内核正是烃类的运移和充注是一个由弱到强（70～120℃）到强到弱（130～180℃）的连续过程，主要成藏期是从三叠纪末到白垩纪末。图3中宏观包络线更似“大肚子”曲线且与生烃的“大肚子”曲线相似，只是运聚的高峰（110～120℃）略滞后于生烃高峰，这样解释似乎高于合理性。其包络线呈双峰型，既可以是烃类不均一排、运的结果，也可能是受取样限制或人为筛选的结果。至于“两期运移”的提法，更使作者产生疑问，难说“两期运移”之间的整整一个侏罗纪就没有或很少有烃类运聚或？

实际上，图3中“低温”处（120～130℃）的样品数量也不少，说明二次运移和充注并没有中断。

[17] 中国科学：地学版，2002年4月，李明诚：对油气运聚研究中一些概念的再思考。
扩散流和达西流的流速差不多，从侧面说明泥质岩中的
流动似乎是可用达西公式定量描述。

浮力流和渗漉都是地下多孔岩石中发生的烃类流
动。浮力流是烃类在水中上浮，与水是否流动无关，在
上浮过程中，烃类可以是连续的，因此不需要考虑运移
饱和度和相对渗透率，也能用达西公式来定量研究。
渗漉是烃类在渗漉体蓄水作用下与水一起呈连续状流
动，因此需要考虑运移饱和度和相对渗透率，并可用
渗漉体和达西公式来进行研究和定量模拟。

流体包裹体的研究在取样、分析测试和信息提取
过程中还有许多不确定因素，单凭流体包裹体中物质
不同程度的，就得出运移时期不同的结论，就确定油藏
间断型的幕式过程，进而稍油气藏是由2或3次充注形成，
这似乎难以置信。但认为油气的运聚是一个带有特征
的连续过程，一个油藏可以有几个主藏期，但很难说一个油藏是在几个互断的幕
次中形成的，即便有这种情况，恐怕也不普遍存在。

参考文献：
27(4)：3-10.
1959. 50-109.
in sedimentary rocks and its role in migration and dissipation
of natural gas[J]. AAPG Memoir 66[C], 1996. 173-183
[6] 李明诚. 石油与天然气运移(第二版)[M]. 北京：石油工业出版
社，1994. 90-100.
139-155.
[8] McAuliffe C D. Oil and gas migration[Z]. AAPG Studies in Geology
10. 89-108.
[9] Saunders D F, et al. Model for hydrocarbon microseepage and
170-184.
[10] 王红军, 等. 流体包裹体常规特征在油气藏研究中的应用[J].
石油勘探与开发，2000, 27(5)：50-52.
定宝, 等[译]. 北京：石油工业出版社，1985. 61-70.
1975, 59(6)：638-650.
fluid in the subsurface[J]. Journal of the Geological Society,
1984, 142(7)：324-377.
[14] 郝永生, 等. 天然气藏的形成和保存[M]. 北京：石油工业出版社，
1995. 16-22.
然气地质, 2001, 21(3)：197-200.
[16] 王世英, 等. 油气运移研究——油藏盆地剖析[M]. 北京：石
[17] 赵文智, 等. 石油地质综合研究手册[M]. 北京：石油工业出版社，
184-200.

Reconsideration on some concepts in research of hydrocarbon
migration and accumulation
LI Ming-cheng
(China University of Geosciences, Beijing 100083, P. R. China)

Abstract: Diffusive transport and Darcy’s flow of hydrocarbon may coexist and transform each other in the heterogeneous formation. Since
the calculated rate of the diffusive transport and the Darcy’s flow in the tight mudstone is about 18m/ma and 15m/ma respectively (from
Welte, et al. 1997), there is little difference between these two kinds of flow in the dense mudstone, and Darcy’s law is suitable for describ-
ing the flow in the mudstone as well. Although both the buoyant ascent and the seepage flow of oil and gas are flows through the subsurface porous media, the former, buoying on the water, moves in discontinuous phase and the latter moves together with water, in continuous phase.
Hence, buoyant ascent does not need the requirements of critical migration saturation and relative permeability, and can’t be described
by Darcy’s law, while the seepage flow requires critical migration saturation and relative permeability, and it can be described by Darcy’s Law. Buoyant ascent, caused only by the difference between the densities of hydrocarbons and water, is the basic mode of the secondary migration. Episodic migration and episodic injection do take place under the ground, but the episode is one concept measured by time. The
migration and accumulation of oil and gas is a continuous process with episodic features. We can’t only emphasize strong episodic activities and
neglect the continuous progress. Moreover, considering the instability of oil sources and the heterogeneity of the pathways, it seems
unbelievable that analysis of fluid inclusions is enough to assure that oil and gas pools formed during two or three injection stages.

Key words: oil and gas migration; diffusive transport; Darcy’s flow, seepage flow, episodic migration, episodic injection