Petroleum Exploration and Development

   

A study on gas charging mechanism by three dimensional visualized pore-scale physical simulation

QIAO Juncheng1,2, ZENG Jianhui1,2, XIA Yuxuan3, CAI Jianchao1,2, CHEN DongXia1,2, JIANG Shu4, HAN Guomeng5, CAO Zhe6, FENG Xiao7, FENG Sen1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    3. School of Geophysics and Spatial Information, China University of Geosciences, Wuhan 430074, China;
    4. Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    5. Dagang Oilfield Company, PetroChina, Tianjin 300280, China;
    6. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China;
    7. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China;
  • Received:2021-05-07 Revised:2021-11-26 Online:2022-01-26 Published:2022-01-26

基于三维可视化孔隙尺度物理模拟的天然气充注机理

乔俊程1,2, 曾溅辉1,2, 夏宇轩3, 蔡建超1,2, 陈冬霞1,2, 蒋恕4, 韩国猛5, 曹喆6, 冯枭7, 冯森1,2   

  1. 1.中国石油大学(北京),油气资源与探测国家重点实验室,北京 102249;
    2.中国石油大学(北京),地球科学学院,北京 102249;
    3.中国地质大学(武汉),地球物理与空间信息学院,武汉 430074;
    4.中国地质大学(武汉),构造与油气资源教育部重点实验室,武汉 430074;
    5.中国石油大港油田公司,天津 300280;
    6.中国石油化工股份有限公司石油勘探开发研究院,北京 102206;
    7.中国石油集团工程技术研究院有限公司,北京 102206
  • 作者简介:乔俊程(1991-),男,山东烟台人,博士,中国石油大学(北京)在站博士后,主要从事含油气盆地油气成藏、非常规油气地质、非常规油气储集层表征与评价等研究工作。地址:北京市府学路中国石油大学(北京),地球科学学院,邮政编码:102249。E-mail: Juncheng.Qiao@cup.edu.cn
  • 基金资助:
    国家自然科学基金委重点项目“致密砂岩微米-纳米孔喉网络系统石油充注、运移和聚集机理”(41330319); 中国博士后科学基金“多类型烃源岩煤系地层源储界面微观通道特征及其对致密气充注的影响研究”(2020M680030); 高校基本科研业务经费项目“致密砂岩气充注机理研究”(2462020XKBH016)

Abstract: A three-dimensional visualized real-time pore-scale physical simulation of natural gas charging , in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to investigate laws of gas and water flow and distribution, and controlling factors during the gas charging process in low-permeability (tight) sandstone reservoir. By describing features of pore-scale gas-water flow and distribution and the variations, it is found that the gas charging in the low permeability (tight) sandstone can be divided into two stages, expansion stage and stable stage. In the expansion stage, the gas flows continuously first into large-sized pores then small-sized pores, and first into centers of the pores then edges of pores; pores more than 20 μm in radius make up the basic framework of gas charging pathway. With the increase of charging pressure, mobile water in the edges of large-sized pores and in the centers of small pores is displaced out successively. Pores 20-50 μm in radius and pores less than 20 μm in radius dominate the expansion of gas charging channels at different stages of charging in turn, leading to reductions in the average pore-throat radius, throat length, and coordination numbers of the pathway. Increase of gas saturation mainly occur in the expansion stage, when pores 30-50 μm in radius control the increase pattern of gas saturation. In the stable stage, gas charging pathways have expanded to the maximum, so the pathways keeps stable in average pore-throat radius, throat length, and coordination number, only irreducible water remains in the pore system, the gas phase is in concentrated clusters, while the water phase in the form of dispersed thin film, and the gas saturation and apparent permeability tend stable. Connected pores less than 20 μm in radius control the expansion limit of the charging pathways, the formation of stable gas-water distribution, and the maximum gas saturation. The heterogeneity of connected pore-throats affects the dynamic variations of gas phase charging and microscopic gas-water distribution. It can be concluded that the pore-throat configuration and heterogeneity of the micro-nanometer pore system control the dynamic variations of the low-permeability (tight) sandstone gas charging process and gas-water distribution features.

Key words: low permeability (tight) sandstone, gas charging, three-dimensional visualization, pore-scale physical simulation, micro-nanometer pore network, gas and water flow and distribution

摘要: 利用三维可视化在线微米-纳米孔隙尺度天然气充注物理模拟实验,结合孔隙尺度原位叠算技术、孔隙网络模拟技术和视渗透率理论,研究低渗(致密)气充注过程中气水流动与分布规律及其影响因素。通过精确刻画分析孔隙尺度气水流动与分布特征及其变化可以发现,低渗(致密)气充注过程分为扩张和稳定两个阶段:扩张阶段形成了大孔喉先于小孔喉,孔喉中央先于边缘的气驱水连续流动模式,半径大于20 μm的孔喉构成了气相充注通道的格架;随充注动力增加,孔隙边缘和更小孔隙中央的可动水持续被驱出,半径为20~50 μm和半径小于20 μm的孔喉分阶段依次主导了气相充注通道的扩张,充注通道的孔喉半径、喉道长度和配位数递减,是气相渗透率与含气饱和度的主要增长阶段;其中,半径为30~50 μm的孔喉控制了含气饱和度的增长模式。稳定阶段,气相充注通道扩张至极限,通道的孔喉半径、喉道长度和配位数保持稳定,孔喉网络中形成稳定的不可动束缚水,气相呈集中网簇状、水相呈分散薄膜状分布,含气饱和度和气相渗透率趋于稳定。半径小于20 μm的连通孔喉控制了气相充注通道的极限规模,控制了稳定气水分布的形成及最大含气饱和度。连通孔喉非均质性影响了孔喉中气相充注和气水分布的动态变化过程。微米-纳米孔喉配置及其非均质性控制了低渗(致密)砂岩气充注动态过程及气水分布特征。

关键词: 低渗(致密)砂岩, 天然气充注, 三维可视化, 孔隙尺度物理模拟, 微米-纳米孔喉网络, 气水流动与分布

CLC Number: