[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[2] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454.
ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al.Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.
[3] HOLDITCH S A.Tight gas sands[J]. Journal of Petroleum Technology, 2006, 58(6): 86-93.
[4] MASTER J A.Deep basin gas trap, western Canada[J]. AAPG Bulletin, 1979, 63(2): 152-181.
[5] SCHMOKER J W.Method for assessing continuous-type (unconventional) hydrocarbon accumulations[R/CD]//GAUTIER D L, DOLTON G L, TAKAHASHI K I, et al. 1995 National assessment of united states oil and gas resources: Results, methodology, and supporting data. Reston: USGS, 1995.
[6] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026.
SUN Longde, ZOU Caineng, JIA Ailin, et al.Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
[7] 童晓光, 郭彬程, 李建忠, 等. 中美致密砂岩气成藏分布异同点比较研究与意义[J]. 中国工程科学, 2012, 14(6): 9-15, 30.
TONG Xiaoguang, GUO Bincheng, LI Jianzhong, et al.Comparison study on accumulation & distribution of tight sandstone gas between China and the United States and its significance[J]. Engineering Science, 2012, 14(6): 9-15, 30.
[8] SCHMOKER J W.U.S. geological survey assessment model for continuous (unconventional) oil and gas accumulations: The “FORSPAN” model: U.S. geological survey bulletin 2168[R]. Denver: U.S. Department of the Interior, 1999.
[9] 赵靖舟, 李军, 曹青, 等. 论致密大油气田成藏模式[J]. 石油与天然气地质, 2013, 34(5): 573-583.
ZHAO Jingzhou, LI Jun, CAO Qing, et al.Hydrocarbon accumulation patterns of large tight oil and gas fields[J]. Oil & Gas Geology, 2013, 34(5): 573-583.
[10] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442.
ZOU Caineng, YANG Zhi, HUANG Shipeng, et al.Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3): 433-442.
[11] 樊阳, 查明, 姜林, 等. 致密砂岩气充注机制及成藏富集规律[J]. 断块油气田, 2014, 21(1): 1-6.
FAN Yang, ZHA Ming, JIANG Lin, et al.Charging mechanism of tight sandstone gas reservoir and its pattern of accumulation and enrichment[J]. Fault-Block Oil and Gas Field, 2014, 21(1): 1-6.
[12] 陶士振, 李昌伟, 黄纯虎, 等. 煤系致密砂岩气运聚动力与二维可视化物理模拟研究: 以川中地区三叠系须家河组致密砂岩气为例[J]. 天然气地球科学, 2016, 27(10): 1767-1777.
TAO Shizhen, LI Changwei, HUANG Chunhu, et al.Migration and accumulation impetus and two-dimension visual physical simulation research of coal-measure tight sandstone gas: A case study from tight sandstone gas in the Upper Triassic Xujiahe Formation, central Sichuan Basin, China[J]. Natural Gas Geoscience, 2016, 27(10): 1767-1777.
[13] NELSON P H.Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
[14] QIAO Juncheng, ZENG Jianhui, JIANG Shu, et al.Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation[J]. Fuel, 2019, 253(6): 1300-1316.
[15] 陶士振, 高晓辉, 李昌伟, 等. 煤系致密砂岩气渗流机理实验模拟研究: 以四川盆地上三叠统须家河组煤系致密砂岩气为例[J]. 天然气地球科学, 2016, 27(7): 1143-1152.
TAO Shizhen, GAO Xiaohui, LI Changwei, et al.The experiment simulation study on gas percolation mechanisms of tight sandstone core in coal measure strata: A case study on coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation, Sichuan Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1143-1152.
[16] 徐轩, 胡勇, 邵龙义, 等. 低渗致密砂岩储层充注模拟实验及含气性变化规律: 以鄂尔多斯盆地苏里格气藏为例[J]. 中国矿业大学学报, 2017, 46(6): 1323-1331, 1339.
XU Xuan, HU Yong, SHAO Longyi, et al.Experimental simulation of gas accumulation mechanism in sandstone reservoir: A case study of Sulige Gas Field, Ordos Basin[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1323-1331, 1339.
[17] 赵子龙, 赵靖舟, 曹磊, 等. 基于充注模拟实验的致密砂岩气成藏过程分析: 以鄂尔多斯盆地为例[J]. 新疆石油地质, 2015, 36(5): 583-587.
ZHAO Zilong, ZHAO Jingzhou, CAO Lei, et al.Accumulation process analysis on tight sandstone gas based on charging simulation experiment: An example of Ordos Basin[J]. Xinjiang Petroleum Geology, 2015, 36(5): 583-587.
[18] LIU Hejuan, ZHU Zhengwen, PATRICK W, et al.Numerical visualization of supercritical CO2 displacement in pore-scale porous and fractured media saturated with water[J]. Advances in Geo-Energy Research, 2020, 4(4): 419-434.
[19] KECECIOGLU I, JIANG Yuxiang.Flow through porous media of packed spheres saturated with water[J]. Journal of Fluids Engineering, 1994, 116(1): 164-170.
[20] SIDDIQUI F, SOLIMAN M Y, HOUSE W, et al.Pre-Darcy flow revisited under experimental investigation[J]. Journal of Analytical Science and Technology, 2016, 7: 2.
[21] WU Jiuzhu, CHENG Linsong, LI Chunlan, et al.Experimental study of nonlinear flow in micropores under low pressure gradient[J]. Transport in Porous Media, 2017, 119(1): 247-265.
[22] ZHANG Yongchao, ZENG Jianhui, QIAO Juncheng, et al.Experimental study on natural gas migration and accumulation mechanism in sweet spots of tight sandstones[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part A): 669-678.
[23] ARMSTRONG R T, OTT H, GEORGIADIS A, et al.Subsecond pore- scale displacement processes and relaxation dynamics in multiphase flow[J]. Water Resources Research, 2014, 50(12): 9162-9176.
[24] ARSHADI M, KHISHVAND M, AGHAEI A, et al.Pore-scale experimental investigation of two-phase flow through fractured porous media[J]. Water Resources Research, 2018, 54(5): 3602-3631.
[25] BULTREYS T, DE BOEVER W, CNUDDE V.Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[J]. Earth-Science Reviews, 2016, 155: 93-128.
[26] ZENG Jianhui, CHENG Shiwei, KONG Xu, et al.Non-Darcy flow in oil accumulation (oil displacing water) and relative permeability and oil saturation characteristics of low-permeability sandstones[J]. Petroleum Science, 2010, 7(1): 20-30.
[27] ZENG Jianhui, ZHANG Yongchao, ZHANG Shanwen, et al.Experimental and theoretical characterization of the natural gas migration and accumulation mechanism in low-permeability (tight) sandstone cores[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1308-1315.
[28] 曾溅辉. 正韵律砂层中渗透率级差对石油运移和聚集影响的模拟实验研究[J]. 石油勘探与开发, 2000, 27(4): 102-105.
ZENG Jianhui.Experimental simulation of impacts of vertical heterogeneity on oil migration and accumulation in fining upwards sands[J]. Petroleum Exploration and Development, 2000, 27(4): 102-105.
[29] 公言杰, 柳少波, 姜林, 等. 致密砂岩气非达西渗流规律与机制实验研究: 以四川盆地须家河组为例[J]. 天然气地球科学, 2014, 25(6): 804-809.
GONG Yanjie, LIU Shaobo, JIANG Lin, et al.Experimental study of seepage characteristic and mechanism in tight gas sands: A case from Xujiahe reservoir of Sichuan Basin[J]. Natural Gas Geoscience, 2014, 25(6): 804-809.
[30] 任晓娟, 阎庆来, 何秋轩, 等. 低渗气层气体的渗流特征实验研究[J]. 西安石油学院学报(自然科学版), 1997(3): 22-25, 4-5.
REN Xiaojuan, YAN Qinglai, HE Qiuxuan, et al. The experimental study of characteristics of gas flow in tight formation[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 1997(3): 22-25, 4-5.
[31] 曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651-661.
ZENG Jianhui, YANG Zhifeng, FENG Xiao, et al.Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651-661.
[32] DEJAM M, HASSANZADEH H, CHEN Zhangxin.Pre-Darcy flow in porous media[J]. Water Resources Research, 2017, 53(10): 8187-8210.
[33] DEJAM M, HASSANZADEH H, CHEN Zhangxin.Pre-Darcy flow in tight and shale formations[C]//Proceedings of the 70th Annual Meeting of the APS Division of Fluid Dynamics. Denver: APS, 2017.
[34] XIONG Yi, YU Jinbiao, SUN Hongxia, et al.A new non-Darcy flow model for low-velocity multiphase flow in tight reservoirs[J]. Transport in Porous Media, 2017, 117(3): 367-383.
[35] ALIZADEH A H, KHISHVAND M, IOANNIDIS M A, et al.Multi-scale experimental study of carbonated water injection: An effective process for mobilization and recovery of trapped oil[J]. Fuel, 2014, 132(1): 219-235.
[36] KHISHVAND M, ALIZADEH A H, PIRI M.In-situ characterization of wettability and pore-scale displacements during two- and three-phase flow in natural porous media[J]. Advances in Water Resources, 2016, 97: 279-298.
[37] LIN Qingyang, BIJELJIC B, FOROUGHI S, et al.Pore-scale imaging of displacement patterns in an altered-wettability carbonate[J]. Chemical Engineering Science, 2021, 235: 116464.
[38] LIN Qingyang, BIJELJIC B, RAEINI A Q, et al. Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093604.
[39] LIN Qingyang, BIJELJIC B, RIEKE H, et al.Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography[J]. Water Resources Research, 2017, 53(8): 7457-7468.
[40] 仵彦卿, 曹广祝, 丁卫华. CT尺度砂岩渗流与应力关系试验研究[J]. 岩石力学与工程学报, 2005, 24(23): 4203-4209.
WU Yanqing, CAO Guangzhu, DING Weihua.Experimental study on relation between seepage and stress of sandstone in CT scale[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4203-4209.
[41] GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128: 373-380.
[42] XIA Yuxuan, CAI Jianchao, PERFECT E, et al.Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction[J]. Journal of Hydrology, 2019, 579(6): 124198.
[43] BEAR J.Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, 1972.
[44] BLUNT M J.Physically-based network modeling of multiphase flow in intermediate-wet porous media[J]. Journal of Petroleum Science and Engineering, 1998, 20(3/4): 117-125.
[45] CHEN Yuedu, LIAN Haojie, LIANG Weiguo, et al.The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 59-71.
[46] TIAN Weibing, LI Aifen, REN Xiaoxia, et al.The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation[J]. Fuel, 2018, 226: 221-229.
[47] 韩国猛, 周素彦, 唐鹿鹿, 等. 歧口凹陷歧北斜坡沙一下亚段致密砂岩油形成条件[J]. 中国石油勘探, 2014, 19(6): 89-96.
HAN Guomeng, ZHOU Suyan, TANG Lulu, et al.Geological conditions for lower Es1 tight sandstone oil in Qibei Slope of Qikou Depression[J]. China Petroleum Exploration, 2014, 19(6): 89-96.
[48] 赵贤正, 蒲秀刚, 周立宏, 等. 断陷湖盆深水沉积地质特征与斜坡区勘探发现: 以渤海湾盆地歧口凹陷板桥—歧北斜坡区沙河街组为例[J]. 石油勘探与开发, 2017, 44(2): 165-176.
ZHAO Xianzheng, PU Xiugang, ZHOU Lihong, et al.Geologic characteristics of deep water deposits and exploration discoveries in slope zones of fault lake basin: A case study of Paleogene Shahejie Formation in Banqiao-Qibei Slope, Qikou Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2017, 44(2): 165-176.
[49] 周立宏, 韩国猛, 董越崎, 等. 渤海湾盆地歧口凹陷滨海断鼻断-砂组合模式与油气成藏[J]. 石油勘探与开发, 2019, 46(5): 869-882.
ZHOU Lihong, HAN Guomeng, DONG Yueqi, et al.Fault-sand combination modes and hydrocarbon accumulation in Binhai fault nose of Qikou Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019, 46(5): 869-882.
[50] QIAO Juncheng, ZENG Jianhui, JIANG Shu, et al.Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities[J]. Marine and Petroleum Geology, 2020, 111: 279-300.
[51] DONG Hu, BLUNT M J.Pore-network extraction from micro- computerized-tomography images[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(3): 036307.
[52] SPURIN C, BULTREYS T, RÜCKER M, et al. Real-time imaging reveals distinct pore-scale dynamics during transient and equilibrium subsurface multiphase flow[J]. Water Resources Research, 2020, 56(12): e2020WR028287. |