|
|
Progress and development direction of stimulation techniques for ultra-deep oil and gas reservoirs |
LEI Qun1, XU Yun1, YANG Zhanwei1, CAI Bo1, WANG Xin1, ZHOU Lang2, LIU Huifeng3, XU Minjie1, WANG Liwei1, Li Shuai1 |
1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
2. PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China;
3. PetroChina Tarim Oilfield Company, Korla 841000, China |
|
|
Abstract By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs, the new progress in this field in China and abroad has been summed up, including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir, performance improvement of fracturing fluid materials, fine stratification of ultra-deep vertical wells, and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells. In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China, the requirements on and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed: (1) The research and application of integrated geological engineering technology is difficult. (2) The requirements on fracturing materials for stimulation are high. (3) It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs. (4) The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high. (5) It is difficult to achieve efficient stimulation of ultra-deep, high-temperature and high-pressure wells. (6) It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation. In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China, seven technical development directions are proposed: (1) To establish systematic new techniques for basic research and evaluation experiments; (2) to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation; (3) to develop high-efficiency fracturing materials for ultra-deep reservoirs; (4) to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs; (5) to explore fracture-control stimulation technology for ultra-deep horizontal well; (6) to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs; (7) to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.
|
Received: 14 April 2020
Published: 04 November 2020
|
|
|
|
|
[1] 张宁宁, 王青, 王建君, 等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探, 2018, 23(1): 44-53.
ZHANG Ningning, WANG Qing, WANG Jianjun, et al.Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world[J]. China Petroleum Exploration, 2018, 23(1): 44-53.
[2] 徐春春, 邹伟宏, 杨跃明, 等. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学, 2017, 28(8): 1139-1153.
XU Chunchun, ZOU Weihong, YANG Yueming, et al.Status and prospects of exploration and exploitation of the deep oil and gas resources onshore China[J]. Natural Gas Geoscience, 2017, 28(8): 1139-1153.
[3] 江同文, 滕学清, 杨向同. 塔里木盆地克深8超深超高压裂缝性致密砂岩气藏快速、高效建产配套技术[J]. 天然气工业, 2016, 36(10): 1-9.
JIANG Tongwen, TENG Xueqing, YANG Xiangtong.Integrated techniques for rapid and highly-efficient development and production of ultra-deep tight sand gas reservoirs of Keshen 8 Block in the Tarim Basin[J]. Natural Gas Industry, 2016, 36(10): 1-9.
[4] VAN DOMELEN M S, JACQUIER R C, SANDERS M W. State-of-the-art fracturing in the North Sea[R]. OTC 7890, 1995.
[5] MALDONADO B, ARRAZOLA A, MORTON B.Ultradeep HP/HT completions: Classification, design methodologies, and technical challenges[R]. OTC 17927, 2006.
[6] BROWN A, FARROW C, COWIE J.The Rhum Field: A successful HP/HT gas subsea development (case history)[R]. SPE 108942, 2007.
[7] HADDAD Z, SMITH M, MORAES F D D, et al. The design and execution of frac jobs in the ultra deepwater lower Tertiary Wilcox formation[R]. SPE 147237, 2011.
[8] 陈家庚, 曹新玲, 李自强. 水力压裂法测定华北地下深部应力[J]. 地震学报, 1982, 4(4): 350-361.
CHEN Jiageng, CAO Xinling, LI Ziqiang.Stress measurements at depth in North China by hydraulic fracturing[J]. Acta Seismologica Sinica, 1982, 4(4): 350-361.
[9] 冯广庆. 试油新技术在野云2井的应用[J]. 油气井测试, 2005, 14(5): 51-53.
FENG Guangqing.Application of new testing tech in well Yeyun2[J]. Well Testing, 2005, 14(5): 51-53.
[10] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.
JIAO Fangzheng.Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
[11] 陈凌, 胡国亮. 从酸压机理探讨塔河油田酸压工艺发展方向[J]. 石油钻探技术, 2004, 32(4): 69-71.
CHEN Ling, HU Guoliang.The developing tread of acid fracturing technique in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2004, 32(4): 69-71.
[12] 张以明, 才博, 何春明, 等. 超高温超深非均质碳酸盐岩储层地质工程一体化体积改造技术[J]. 石油学报, 2018, 39(1): 92-100.
ZHANG Yiming, CAI Bo, HE Chunming, et al.Volume fracturing technology based on geo-engineering integration for ultra-high temperature and ultra-deep heterogeneous carbonate reservoir[J]. Acta Petrolei Sinica, 2018, 39(1): 92-100.
[13] 雷群, 胥云, 蒋廷学, 等. 用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J]. 石油学报, 2009, 30(2): 237-241.
LEI Qun, XU Yun, JIANG Tingxue, et al.“Fracture network” fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2009, 30(2): 237-241.
[14] CHUPRAKOV D, PRIOUL R.Hydraulic fracture height containment by weak horizontal interfaces[R]. SPE 173337, 2015.
[15] WANG L W, CAI B, QIU X H, et al.A case study: Field application of ultra-high temperature fluid in deep well[R]. SPE 180546, 2016.
[16] WANG Y H, ZHANG F X, CHENG X S, et al.Proppant fracturing for ultra-high pressure deep gas reservoir[R]. SPE 130905, 2010.
[17] 程万, 金衍, 陈勉, 等. 三维空间中水力裂缝穿透天然裂缝的判别准则[J]. 石油勘探与开发, 2014, 41(3): 2-10.
CHENG Wan, JIN Yan, CHEN Mian, et al.A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J]. Petroleum Exploration and Development, 2014, 41(3): 2-10.
[18] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887.
XU Yun, LEI Qun, CHEN Ming, et al.Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-557.
[19] 付海峰, 刘云志, 梁天成, 等. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
FU Haifeng, LIU Yunzhi, LIANG Tiancheng, et al.Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J]. Natural Gas Geoscience, 2016, 27(12): 2231-2236.
[20] 才博, 张以明, 金凤鸣, 等. 超高温储层深度酸压液体体系研究与应用[J]. 钻井液与完井液, 2013, 30(1): 69-71, 74.
CAI Bo, ZHANG Yiming, JIN Fengming, et al.Research on acid fracturing system with improving stimulated reservoir volume[J]. Drilling Fluid & Completion Fluid, 2013, 30(1): 69-71, 74.
[21] 杨振周, 陈勉, 胥云, 等. 新型合成聚合物超高温压裂液体系[J]. 钻井液与完井液, 2011, 28(1): 49-51.
YANG Zhenzhou, CHEN Mian, XU Yun, et al.Research of new ultra high temperature synthetic polymer fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2011, 28(1): 49-51.
[22] 徐敏杰, 管保山, 刘萍, 等. 近十年国内超高温压裂液技术研究进展[J]. 油田化学, 2018, 35(4): 721-725.
XU Minjie, GUAN Baoshan, LIU Ping, et al.Domestic progress of ultrahigh-temperature fracturing fluids in the last decade[J]. Oilfield Chemistry, 2018, 35(4): 721-725.
[23] GAO Y, LIAN S J, SHI Y, et al.A new acid fracturing fluid system for high temperature deep well carbonate reservoir[R]. SPE 181823, 2016.
[24] WANG L W, ZHAI W, CAI B, et al.220 ℃ ultra-temperature fracturing fluid in high pressure and high temperature reservoirs[R]. OTC 26364, 2016.
[25] LUNGWTTZ B, BRADY M E, DANIEL S, et al. Viscoelastic stable at high brine concentrations: US 6762154B2[P].2004-07-13.
[26] BAGAL J, GURMEN M N, HOLICEK R A, et al.Engineered application of a weighted fracturing fluid in deep water[R]. SPE 98348, 2006.
[27] RIVAS L, NAVAIRA G, BOURGEOIS B.Development and use of high-density fracturing fluid in deep water gulf of Mexico frac and packs[R]. SPE 116007, 2008.
[28] 侯帆, 仇宇楠, 张雄, 等. 低摩阻高比重耐高温压裂液的制备与性能评价[J]. 油田化学, 2018, 35(4): 618-621.
HOU Fan, QIU Yunan, ZHANG Xiong, et al.Preparation and performance evaluation of fracturing fluid with low friction, high density and high temperature resistance[J]. Oilfield Chemistry, 2018, 35(4): 618-621.
[29] 程兴生, 张福祥, 徐敏杰, 等. 低成本加重瓜胶压裂液的性能与应用[J]. 石油钻采工艺, 2011, 33(2): 91-93.
CHENG Xingsheng, ZHANG Fuxiang, XU Minjie, et al.Performance and application of weighted GHPG fracturing fluid with low cost[J]. Oil Drilling&Production Technology, 2011, 33(2): 91-93.
[30] 李刚, 郭新江, 陈海龙, 等. 高密度酸加重酸化技术在川西深井异常高压气层增产中的应用[J]. 矿物岩石, 2006, 26(4): 105-110.
LI Gang, GUO Xinjiang, CHEN Hailong, et al.Application of aggravating acidification of high density acid in stimulation of deep well with surpressure gas reservoir of West Sichuan[J]. Mineralogy and Petrology, 2006, 26(4): 105-110.
[31] 毛金成, 王晨, 张恒, 等. 阳离子VES转向酸体系的研制及性能评价[J]. 石油与天然气化工, 2019, 48(6): 65-69.
MAO Jincheng, WANG Chen, ZHANG Heng, et al.Development and performance evaluation of cationic VES diverting acid system[J]. Chemical Engineering of Oil & Gas, 2019, 48(6): 65-69.
[32] 牛新明, 张进双, 周号博. “三超”油气井井控技术难点及对策[J]. 石油钻探技术, 2017, 45(4): 1-7.
NIU Xinming, ZHANG Jinshuang, ZHOU Haobo.Technological challenges and countermeasures in well control of ultra-deep ultra-high temperature and ultra-high pressure oil and gas wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 1-7.
[33] 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 168-175.
LEI Qun, GUAN Baoshan, CAI Bo, et al.Technological process and prospect of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 168-175.
[34] 胥云, 陈铭, 吴奇, 等. 水平井体积改造应力干扰计算模型及其应用[J]. 石油勘探与开发, 2016, 43(5): 780-786.
XU Yun, CHEN Ming, WU Qi, et al.Stress interference calculation model and its application in volume stimulation of horizontal wells[J]. Petroleum Exploration and Development, 2016, 43(5): 780-786.
[35] RABAA W E.Experimental study of hydraulic fracture geometry initiated from horizontal wells[R]. SPE 19720, 1989.
[36] 杨战伟, 胥云, 程兴生, 等. 水力喷射酸压技术在轮南碳酸盐岩水平井中的应用[J]. 钻采工艺, 2012, 35(1): 49-51.
YANG Zhanwei, XU Yun, CHENG Xingsheng, et al.Research and application of hydraulic jetting and acid fracturing technology in horizontal well of Lunnan carbonate formation[J]. Drilling and Production Technology, 2012, 35(1): 49-51.
[37] 雷群, 杨立峰, 段瑶瑶, 等. 非常规油气“缝控储量”改造优化设计技术[J]. 石油勘探与开发, 2018, 45(4): 719-726.
LEI Qun, YANG Lifeng, DUAN Yaoyao, et al.The “fracture- controlled reserves” based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018, 45(4): 719-726.
[38] CIEZOBKA J, COURTIER J, WICKER J.Hydraulic fracturing test site (HFTS): Project overview and summary of results[R]. SPE 2937168, 2018.
[39] ROBERTS G, LILLY T B, TYMONS T R.Improved well stimulation through the application of downhole video analytics[R]. SPE18985, 2018.
[40] STARK P F, BOHRER N C, KEMNER T T, el at. Improved completion economics through real-time, fiber optic stimulation monitoring[R]. SPE 194314, 2019.
[41] 刘博, 苗红波, 徐刚, 等. 微地震同步压裂监测技术研究与应用[J]. 钻采工艺, 2017, 40(4): 53-55.
LIU Bo, MIAO Hongbo, XU Gang, et al.Study on microseismic monitoring of synchronous fracturing and its application[J]. Drilling & Production Technology, 2017, 40(4): 53-55. |
|
|
|