|
|
Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China |
WU Guanghui1,2, Ma Bingshan1,2, HAN Jianfa3, GUAN Baozhu3, CHEN Xin1, YANG Peng4, XIE Zhou3 |
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
2. PetroChina Key Laboratory of Carbonate Reservoir, Southwest Petroleum University, Chengdu 610500, China;
3. Tarim Oilfield Company, PetroChina, Kuerle 841000, China;
4. State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China |
|
|
Abstract Through fault structure analysis, fracture cements U-Pb dating, and regional structure analysis, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin. (1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation age is constrained at about 460 Ma according to U-Pb dating in the fault cements and the fault termination layers in seismic sections. (2) The formation of the strike-slip faults were controlled by the near N-S direction regional stress field caused by far-field compression of the closing of the Proto-Tethys Ocean. (3) The pre-existing structures of the NE trending weakening zones in the basement, the structure boundary and the platform margin impacted the faults localization and characteristics in the different units from south to north. (4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms. (5) Sequential slip accommodated deformation and strain in the fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault system in the central Tarim basin. The regional and localized field stress, and pre-existing structures and lithofacies had strong impacts on the diversity of the strike-slip faults in the Tarim intracratonic basin.
|
Received: 11 February 2020
Published: 19 October 2020
|
|
|
|
|
[1] SYLVESTER A G.Strike-slip faults[J]. Geological Society of America Bulletin, 1988, 100(11): 1666-1703.
[2] CUNNINGHAM W D, MANN P.Tectonics of strike-slip restraining and releasing bends[M]. Special Publications, London: Geological Society, 2007, 290:1-12.
[3] WOODCOCK N H, SCHUBERT V.Continental strike-slip tectonics[M]. Oxford: Pergamon Press, 1994: 251-263.
[4] AYDIN A, SCHULTZ R A.Effect of mechanical interaction on the development of strike-slip faults with echelon patterns[J]. Journal of Structural Geology, 1990, 12: 123-129.
[5] CRIDER J G, PEACOCK D.Initiation of brittle faults in the upper crust: A review of field observations[J]. Journal of Structural Geology, 2004, 26: 691-707.
[6] CURREN I S, BIRD P.Formation and suppression of strike-slip fault systems[J]. Pure & Applied Geophysics, 2014, 171(11): 2899-2918.
[7] CAO S, NEUBAUER F.Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries[J]. Earth-Science Reviews, 2016, 162: 155-176.
[8] MITCHELL T M, FAULKNER D R.The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile[J]. Journal of Structural Geology, 2009, 31: 802-816.
[9] FAULKNER D R, JACKSON C A L, LUNN R J, et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010, 32: 1557-1575.
[10] DOOLEY T P, SCHREURS G.Analogue modeling of interpolate strike-slip tectonics: A review and new experimental results[J]. Tectonophysics, 2012, 574: 1-17.
[11] 肖阳, 邬光辉, 雷永良, 等. 走滑断裂带贯穿过程与发育模式的物理模拟[J]. 石油勘探与开发, 2017, 44(3): 340-348.
XIAO Yang, WU Guanghui, LEI Yongliang, et al.Analogue modeling of through-going process and development pattern of strike-slip fault zone[J]. Petroleum Exploration and Development, 2017, 44(3): 340-348.
[12] TORGERSEN E, VIOLA G.Structural and temporal evolution of a reactivated brittle-ductile fault (Part I): Fault architecture, strain localization mechanisms and deformation history[J]. Earth and Planetary Science Letters, 2014, 407: 205-220.
[13] BENSE V F, GLEESON T, LOVELESS S E, et al.Fault zone hydrogeology[J]. Earth-Science Reviews, 2013, 127: 171-192.
[14] TAGAMI T.Thermochronological investigation of fault zones[J]. Tectonophysics, 2012, 538: 67-85.
[15] ROBERTS N M, WALKER R J.U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534.
[16] GOGONENKOV G N, TIMURZIEV A I.Strike-slip faults in the West Siberian Basin: Implications for petroleum exploration and development[J]. Russian Geology and Geophysics, 2010, 51: 304-316.
[17] MANN P.Comparison of structural styles and giant hydrocarbon occurrences within four active strike-slip regions: California, Southern Caribbean, Sumatra, and East China[J]. AAPG Memoir, 2013, 100: 43-93.
[18] HUANG L, LIU C Y.Evolutionary characteristics of the sags to the east of Tanlu Fault Zone, Bohai Bay Basin (China): Implications for hydrocarbon exploration and regional tectonic evolution[J]. Journal of Asian Earth Sciences, 2014, 79: 275-287.
[19] 范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发, 2018, 45(2): 190-199.
FAN Caiwei.Tectonic deformation features and petroleum geological significance in Yinggehai large strike-slip basin, South China Sea[J]. Petroleum Exploration and Development, 2018, 45(2): 190-199.
[20] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
JIAO Fangzheng.Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839.
[21] 韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310.
HAN Jianfa, SU Zhou, CHEN Lixin, et al.Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11): 1296-1310.
[22] 杨海军, 邓兴梁, 张银涛, 等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 13-23.
YANG Haijun, DENG Xingliang, ZHANG Yintao, et al.Great discovery and its significance of exploration for Ordovician ultra-deep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 13-23.
[23] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.
LU Xinbian, HU Wenge, WANG Yan, et al.Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[24] 江同文, 韩剑发, 邬光辉, 等. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J]. 石油勘探与开发, 2020, 47(2): 213-224.
JIANG Tongwen, HAN Jianfa, WU Guanghui, et al.Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong Uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 213-224.
[25] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al.Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296.
[26] WU G H, ZHAO K Z, QU H Z, et al.Permeability distribution and scaling in multi-stages carbonate damage zones: Insight from strike-slip fault zones in the Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2019, 36: 114-118.
[27] 邬光辉, 杨海军, 屈泰来, 等. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用[J]. 岩石学报, 2012, 28(2): 793-805.
WU Guanghui, YANG Haijun, QU Tailai, et al.Fault system characteristics and their controlling roles on marine carbonate hydrocarbon in the Central Uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(2): 793-805.
[28] 甄素静, 汤良杰, 李宗杰, 等. 塔中北坡顺南地区走滑断裂样式、变形机理及石油地质意义[J]. 天然气地球科学, 2015, 26(12): 2315-2324.
ZHEN Sujing, TANG Liangjie, LI Zongjie, et al.The characteristics, formation and petroleum geology significance of the strike-slip fault system in Shunnan area, northern slope of Tazhong Uplift[J]. Natural Gas Geoscience, 2015, 26(12): 2315-2324.
[29] HAN X Y, DENG S, TANG L J, et al.Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong Uplift in Tarim Basin: A study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 34: 410-427.
[30] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888.
DENG Shang, LI Huili, ZHANG Zhongpei, et al.Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888.
[31] WU G H, YUAN Y J, HUANG S Y, et al.The dihedral angle and intersection processes of a conjugate strike-slip fault system in the Tarim Basin, NW China[J]. Acta Geologica Sinica, 2018, 92(1): 74-88.
[32] 杨海军, 邬光辉, 韩剑发, 等. 塔里木克拉通内盆地走滑断层构造解析[J]. 地质科学, 2020, 55(1): 1-16.
YANG Haijun, WU Guanghui, HAN Jianfa, et al.Structural analysis of strike-slip faults in the Tarim intracratonic Basin[J]. Chinese Journal of Geology, 2020, 55(1): 1-16.
[33] WU G H, KIM Y S, SU Z, et al.Segment interaction and linkage evolution in a conjugate strike-slip fault system from the Tarim Basin[J]. Marine and Petroleum Geology, 2020, 37: 110-115.
[34] 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社. 1997.
JIA Chengzao.Tectonic characteristics and petroleum, Tarim Basin, China[M]. Beijing: Petroleum Industry Press. 1997.
[35] 邬光辉, 庞雄奇, 李启明, 等. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例[M]. 北京: 科学出版社, 2016.
WU Guanghui, PANG Xiongqi, LI Qiming, et al.The structural characteristics of carbonate recks and their effects on hydrocarbon exploration in Craton Basin: A case study of the Tarim Basin[M]. Beijing: Science Press, 2016.
[36] TORABI A, BERG S S.Scaling of fault attributes: A review[J]. Marine and Petroleum Geology, 2011, 28: 1444-1460.
[37] 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别: 以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3): 379-389.
HUANG Cheng.Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method: A case study of Shunbei area, Tarim Basin[J]. Petroleum Geology and Experiment, 2019, 41(3): 379-389.
[38] 能源, 邬光辉, 黄少英, 等. 再论塔里木盆地古隆起的形成期与主控因素[J]. 天然气工业, 2016, 36(4): 27-34.
NENG Yuan, WU Guanghui, HUANG Shaoying, et al.Formation stage and controlling factors of the paleo-uplifts in the Tarim Basin: A further discussion[J]. Natural Gas Industry, 2016, 36(4): 27-34.
[39] 淡永, 邹灏, 梁彬, 等. 塔北哈拉哈塘加里东期多期岩溶古地貌恢复与洞穴储层分布预测[J]. 石油与天然气地质, 2016, 37(3): 304-312.
DAN Yong, ZOU Hao, LIANG Bin, et al.Restoration of multistage paleogeomorphology during Caledonian Period and paleokarst cavernous prediction in Halahatang Area, northern Tarim Basin[J]. Oil & Gas Geology, 2016, 37(3): 304-312.
[40] 沈安江, 胡安平, 程婷, 等. 激光原位U-PB同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074.
SHEN Anjiang, HU Anping, CHENG Ting, et al.Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074.
[41] LI S Z, ZHAO S J, LIU X, et al.Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75.
[42] ZHANG Q C, WU Z H, CHEN X H, et al.Proto-Tethys oceanic slab break-off: Insights from early Paleozoic magmatic diversity in the West Kunlun Orogen, NW Tibetan Plateau[J]. Lithos, 2019, 346: 105-114.
[43] ZHANG H, ZHU Y, FENG W, et al.Paleozoic intrusive rocks in the Nalati mountain range (NMR), southwest Tianshan: Geodynamic evolution based on petrology and geochemical studies[J]. Journal of Earth Science, 2017, 28: 196-217.
[44] YANG H J, WU G H, KUSKY T M, et al.Paleoproterozoic assembly of the north and south Tarim terranes: New insights from deep seismic profiles and Precambrian granite cores[J]. Precambrian Research, 2018, 305: 151-165.
[45] ISMAT Z.What can the dihedral angle of conjugate-faults tell us?[J]. Journal of Structural Geology, 2015, 73: 97-113.
[46] YIN A, TAYLOR M.Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Bulletin of the Geological Society of America, 2011, 123: 1798-1821.
[47] SCHWARZ H U, KILFITT F W.Confluence and intersection of interacting conjugate faults: A new concept based on analogue experiments[J]. Journal of Structural Geology, 2008, 30: 1126-1137.
[48] MORLEY C K.Outcrop examples of soft-sediment deformation associated with normal fault terminations in deepwater, Eocene turbidites: A previously undescribed conjugate fault termination style?[J]. Journal of Structural Geology, 2014, 69: 189-208.
[49] BRETAN P G, NICOL A, WALSH J J.Origin of some conjugate or "X" fault structures[J]. The Leading Edge, 1996, 15(7): 812-816. |
|
|
|