|
|
Main flow channel index in porous sand reservoirs and its application |
LI Xizhe, LUO Ruilan, HU Yong, XU Xuan, JIAO Chunyan, GUO Zhenhua, WAN Yujin, LIU Xiaohua, LI Yang |
PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China |
|
|
Abstract Based on well test interpretation, production performance analysis, overburden permeability and porosity test, gas-water core flooding test and high-pressure mercury injection, a quantitative correlation has been built of in-situ effective permeability with routine permeability and water saturation, and the ranges of Main Flow Channel Index (MFCI) are determined for different permeability levels in porous sand gas reservoirs. A new method to evaluate the in-situ effective permeability of porous sand reservoir and a correlation chart of reserves producing degree and main flow channel index are established. The results reveal that the main flow channel index of porous sand gas reservoirs has close correlation with routine matrix permeability and water saturation. The lower the routine matrix permeability and the higher the water saturation, the lower the MFCI is. If the routine matrix permeability is greater than 5.0×10-3, the MFCI is generally greater than 0.5. When the routine matrix permeability is from 1.0×10-3 to 5.0×10-3, the MFCI is mainly between 0.2 and 0.5. When the routine matrix permeability is less than 1.0×10-3, the MFCI is less than 0.2. The evaluation method of in-situ effective permeability can be used to evaluate newly discovered or not tested porous sand gas reservoirs quickly and identify whether there is tight sand gas. The correlation chart of reserves producing degree and main flow channel index can provide basis for recoverable reserves evaluation and well infilling, and provide technical support for evaluation and development and formulation of reasonable technical policy of gas reservoir.
|
Received: 21 March 2020
|
|
|
|
|
[1] HOLDITCH S A.Tight gas sands[J]. Journal of Petroleum Technology, 2006, 58(6): 86-93. [2] LUFFEL D L, HOWARD W E, HUNT E R.Travis peak core permeability and porosity relationships at reservoir stress[J]. SPE Formation Evaluation, 1991, 6(3): 310-319. [3] DOBRYNIN V M.Effect of overburden pressure on some properties of sandstones[J]. Society of Petroleum Engineers Journal, 1962, 2(4): 360-366. [4] MCLATCHIE A S, MCLATCHIE A S, HEMSTOCK R A, et al.Effective compressibility of reservoir rock and its effects on permeability[J]. Journal of Petroleum Technology, 1958, 10(6): 49-51. [5] WEI K K, MORROW N R, BROWER K R.Effect of fluid, confining pressure and temperature on absolute permeabilities of low permeability sandstones[J]. SPE Formation Evaluation, 1986, 1(4): 413-423. [6] 罗瑞兰, 程林松, 彭建春, 等. 确定低渗岩心渗透率随有效覆压变化关系的新方法[J]. 中国石油大学学报(自然科学版), 2000, 31(2): 87-90. LUO Ruilan, CHENG Linsong, PENG Jianchun, et al.A new method to determine the relationship between permeability of low permeability core and effective overburden pressure[J]. Journal of China University of Petroleum (Natural Science Edition), 2000, 31(2): 87-90. [7] 张浩, 康毅力, 陈一健, 等. 致密砂岩油气储层岩石变形理论与应力敏感性[J]. 天然气地球科学, 2004, 15(5): 482-486. ZHANG Hao, KANG Yili, CHEN Yijian, et al.Theory of rock deformation and stress sensitivity of tight sandstone reservoir[J]. Natural Gas Geoscience, 2004, 15(5): 482-486. [8] 康毅力, 张浩, 陈一健, 等. 鄂尔多斯盆地大牛地气田致密砂岩气层应力敏感性综合研究[J]. 天然气地球科学, 2006, 17(3): 335-338. KANG Yili, ZHANG Hao, CHEN Yijian, et al.Comprehensive study on stress sensitivity of tight sand stone reservoir in Daniu gas field of Ordos basin[J]. Natural Gas Geoscience, 2006, 17(3): 335-338. [9] 杨满平, 李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601-603. YANG Manping, LI Yun.The analysis about rock stress sensitivity considering in situ stress[J]. Natural Gas Geoscience, 2004, 15(6): 601-603. [10] 游利军, 康毅力, 陈一健, 等. 含水饱和度和有效应力对致密砂岩有效渗透率的影响[J]. 天然气工业, 2004, 24(12): 105-107. YOU Lijun, KANG Yili, CHEN Yijian, et al.Influence of water saturation and effective stress on permeability of tight sandstone[J]. Natural Gas Industry, 2004, 24(12): 105-107. [11] HUNT E B, BERRY V J.Evolution of gas from liquids flowing through porous media[J]. American Institute of Chemical Engineering Journal, 1956, 2(4): 560-567. [12] AGUILERA R.Incorporating capillary pressure, pore throat aperture radii, height above free-water table, and Winland r35 values on Pickett plots[J]. American Association of Petroleum Geologists Bulletin, 2002, 86(4): 605-624. [13] BYRNES A P, SAMPATH K, RANDOLPH P L.Effect of pressure and water saturation on the permeability of western tight sandstones[R]. Tulsa, Oklahoma: Energy Symposium on enhanced oil and gas recovery, 1979. [14] BYRNES A P.Reservoir characteristics of low-permeability sandstones in the Rocky Mountains[J]. The Mountain Geologist, 1997, 43(1): 37-51. [15] BYRNES A P.Aspects of permeability, capillary pressure, and relative permeability properties and distribution in low-permeability rocks important to evaluation, damage, and stimulation[R]. Wyoming: Petroleum Systems and Reservoirs of Southwest Wyoming Symposium, 2003. [16] LEVERETT M C.Capillary behavior in porous solids[J]. Transactions of the AIME, 1941, 142(1): 152-169. [17] 赵文智, 卞从胜, 徐兆辉. 苏里格气田与川中须家河组气田成藏共性与差异[J]. 石油勘探与开发, 2013, 40(4): 400-408. ZHAO Wenzhi, BIAN Congsheng, XU Zhaohui.Similarities and differences between natural gas accumulations in Sulige gas field in Ordos Basin and Xujiahe gas field in central Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(4): 400-408. [18] 庄惠农. 气藏动态描述和试井[M]. 北京: 石油工业出版社, 2009. ZHUANG Huinong. Dynamic description and well test of gas reservoir[M]. Beijing: Petroleum Industry Press, 2009. [19] 李熙喆, 卢德唐, 罗瑞兰, 等. 复杂多孔介质主流通道定量判识标准[J]. 石油勘探与开发, 2019, 46(5): 943-949. LI Xizhe, LU Detang, LUO Ruilan, et al.Quantitative criteria for identifying main flow channels in complex porous media[J]. Petroleum Exploration and Development, 2019, 46(5): 943-949. [20] 中华人民共和国国家质量监督检验检疫总局. 岩石中两相流体相对渗透率测定方法: GB/T 28912—2012[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the PRC. Test method for two phase relative permeability in rock: GB/T 28912—2012[S]. Beijing: China Standards Press, 2012. [21] 胡勇, 李熙喆, 卢祥国, 等. 砂岩气藏衰竭开采过程中含水饱和度变化规律[J]. 石油勘探与开发, 2014, 41(6): 723-726. HU Yong, LI Xizhe, LU Xiangguo, et al.Varying law of water saturation in the depletion-drive development of sandstone gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 723-726. [22] 胡勇. 致密砂岩气藏储层渗流机理研究[D]. 大庆: 东北石油大学, 2016. HU Yong.Research on percolation mechanism of tight sandstone gas reservoir[D]. Daqing: Northeast Petroleum University, 2016. [23] 中华人民共和国国家质量监督检验检疫总局. 天然气藏分类标准: GB/T 2679—2011[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the PRC. The classification of natural gas pool: GB/T 26979—2011[S]. Beijing: China Standards Press, 2011. [24] 胡勇, 李熙喆, 万玉金, 等. 致密砂岩气渗流特征物理模拟[J]. 石油勘探与开发, 2013, 40(5): 580-584. HU Yong, LI Xizhe, WAN Yujin, et al.Physical simulation on gas percolation in tight sandstone[J]. Petroleum Exploration and Development, 2013, 40(5): 580-584. [25] 国家能源局. 气田开发主要生产技术指标及计算方法: SY/T 6170—2012[S]. 北京: 中国标准出版社, 2012. National Energy Administration. The technical indexes of natural gas production and relative calculation methods: SY/T 6170—2012[S]. Beijing: China Standards Press, 2012. |
|
|
|