|
|
Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin |
LI Weiqiang1, MU Longxin2, ZHAO Lun2, LI Jianxin2, WANG Shuqin2, FAN Zifei2, SHAO Dali1, LI Changhai3, SHAN Fachao2, ZHAO Wenqi2, SUN Meng2 |
1. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China; 2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 3. School of Earth and Space Sciences, Peking University, Beijing 100871, China |
|
|
Abstract Carboniferous carbonate reservoirs at the eastern edge of the Pre-Caspian Basin have undergone complex sedimentation, diagenesis and tectonism processes, and developed various reservoir space types of pores, cavities and fractures with complicated combination patterns which create intricate pore-throats structure. The complex pore-throat structure leads to the complex porosity-permeability relationship, bringing great challenges for classification and evaluation of reservoirs and efficient development. Based on the comprehensive analysis on cores, thin sections, SEM, mercury intrusion, routine core analysis and various tests, this paper systematically investigated the features and main controlling factors of pore-throats structure and its impact on the porosity-permeability relationship of the four reservoir types which were pore-cavity-fracture, pore-cavity, pore-fracture and pore, and three progresses are made. (1) A set of classification and descriptive approach for pore-throat structure of Carboniferous carbonate reservoirs applied to the eastern edge of the Pre-Caspian Basin was established. Four types of pore-throat structures were developed which were wide multimodal mode, wide bimodal mode, centralized unimodal mode and asymmetry bimodal mode, respectively. The discriminant index of pore-throat structure was proposed, realizing the quantitative characterization of pore-throat structure types. (2) The microscopic heterogeneity of pore reservoir was the strongest and four types of pore-throat structures were all developed. The pore-fracture and pore-cavity-fracture reservoirs took the second place, and the microscopic heterogeneity of pore-cavity reservoir was the weakest. It was revealed that the main controlling factor of pore-throat structure was the combination patterns of reservoir space types formed by sedimentation, diagenesis and tectonism. (3) It was revealed that the development of various pore-throat structure types was the important factor affecting poroperm relationship of reservoirs. The calculation accuracy of permeability of reservoirs can be improved remarkably by subdividing the pore-throat structure types. This study deepens the understanding of pore-throat structure of complicated carbonate reservoirs, and is conducive to classification and evaluation, establishment of precise porosity-permeability relationship and highly efficient development of carbonate reservoirs.
|
Received: 16 January 2019
|
|
|
|
|
[1] BAGRINTSEVA K I.Carbonate reservoir rocks[M]. New Jersey: John Wiley & Sons, 2015. [2] ALOTAIBI M B, AZMY R, NASR-EL-DIN H A. Wettability challenges in carbonate reservoirs[R]. SPE 129972-MS, 2010. [3] 穆龙新, 陈亚强, 许安著, 等. 中国石油海外油气田开发技术进展与发展方向[J]. 石油勘探与开发, 2020, 47(1): 120-128. MU Longxin, CHEN Yaqiang, XU Anzhu, et al.Technological progress and development directions of PetroChina overseas oil and gas field production[J]. Petroleum Exploration and Development, 2020, 47(1): 120-128. [4] MOORE C H, WADE W J.Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2013: 51-65. [5] 何伶, 赵伦, 李建新, 等. 碳酸盐岩储集层复杂孔渗关系及影响因素: 以滨里海盆地台地相为例[J]. 石油勘探与开发, 2014, 41(2): 206-214. HE Ling, ZHAO Lun, LI Jianxin, et al.Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors: A case of platform facies in Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2014, 41(2): 206-214. [6] EHRENBERG S N, NADEAU P H.Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89(4): 435-445. [7] NELSON P H, KIBLER J E.Permeability-porosity relationships in sedimentary rocks[J]. Log Analyst, 1994, 35(3): 38-62. [8] WEGER R J, EBERLI G P, BAECHLE G T, et al.Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J]. AAPG Bulletin, 2009, 93(10): 1297-1317. [9] 王小敏, 樊太亮. 碳酸盐岩储层渗透率研究现状与前瞻[J]. 地学前缘, 2013, 20(5): 166-174. WANG Xiaomin, FAN Tailiang.Progress of research on permeability of carbonate rocks[J]. Earth Science Frontiers, 2013, 20(5): 166-174. [10] LØNØY A. Making sense of carbonate pore systems[J]. AAPG Bulletin, 2006, 90(9): 1381-1405. [11] HULEA I N, NICHOLLS C A.Carbonate rock characterization and modeling: Capillary pressure and permeability in multimodal rocks: A look beyond sample specific heterogeneity[J]. AAPG Bulletin, 2012, 96(9): 1627-1642. [12] 秦瑞宝, 李雄炎, 刘春成, 等. 碳酸盐岩储层孔隙结构的影响因素与储层参数的定量评价[J]. 地学前缘, 2015, 22(1): 251-259. QIN Ruibao, LI Xiongyan, LIU Chuncheng, et al.Influential factors of pore structure and quantitative evaluation of reservoir parameters in carbonate reservoirs[J]. Earth Science Frontiers, 2015, 22(1): 251-259. [13] 郭振华, 李光辉, 吴蕾, 等. 碳酸盐岩储层孔隙结构评价方法: 以土库曼斯坦阿姆河右岸气田为例[J]. 石油学报, 2011, 32(3): 459-465. GUO Zhenhua, LI Guanghui, WU Lei, et al.Pore texture evaluation of carbonate reservoirs in Gasfield A, Turkmenistan[J]. Acta Petrolei Sinica, 2011, 32(3): 459-465. [14] 万云, 詹俊, 陶卉. 碳酸盐岩储层孔隙结构研究[J]. 油气田地面工程, 2008, 27(12): 13-14. WAN Yun, ZHAN Jun, TAO Hui.Pore structure study of carbonate reservoir[J]. Oil-Gasfield Surface Engineering, 2008, 27(12): 13-14. [15] 王起琮, 赵淑萍, 魏钦廉, 等. 鄂尔多斯盆地中奥陶统马家沟组海相碳酸盐岩储集层特征[J]. 古地理学报, 2012, 14(2): 229-242. WANG Qizong, ZHAO Shuping, WEI Qinlian, et al.Marine carbonate reservoir characteristics of the Middle Ordovician Majiagou Formation in Ordos Basin[J]. Journal of Palaeogeography, 2012, 14(2): 229-242. [16] 邓虎成, 周文, 郭睿, 等. 伊拉克艾哈代布油田中-下白垩统碳酸盐岩储层孔隙结构及控制因素[J]. 岩石学报, 2014, 30(3): 801-812. DENG Hucheng, ZHOU Wen, GUO Rui, et al.Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous formation, AI Hardy cloth Oilfield, Iraq[J]. Acta Petrologica Sinica, 2014, 30(3): 801-812. [17] 魏丽, 王震亮, 冯强汉, 等. 靖边气田北部奥陶系马五1亚段碳酸盐岩成岩作用及其孔隙结构特征[J]. 天然气地球科学, 2015, 26(12): 2234-2244. WEI Li, WANG Zhenliang, FENG Qianghan, et al.Diagenesis in carbonate reservoir and pore structure characteristic from the Ordovician Ma51 sub-member reservoir in the northern Jingbian Gasfield[J]. Nature Gas Geoscience, 2015, 26(12): 2234-2244. [18] 金值民, 谭秀成, 郭睿, 等. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J]. 沉积学报, 2018, 36(5): 981-994. JIN Zhimin, TAN Xiucheng, GUO Rui, et al.Pore structure characteristics and control factors of carbonate reservoirs: The Cretaceous Mishrif Formation, Halfaya oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2018, 36(5): 981-994. [19] LIU H, TIAN Z, LIU B, et al.Pore types, origins and control on reservoir heterogeneity of carbonate rocks in Middle Cretaceous Mishrif Formation of the West Qurna Oilfield, Iraq[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1338-1349. [20] ANSELMETTI F S, LUTHI S, EBERLI G P.Quantitative characterization of carbonate pore systems by digital image analysis[J]. AAPG Bulletin, 1998, 82(10): 1815-1836. [21] AGUILERA R.Incorporating capillary pressure, pore throat aperture radii, height above free-water table, and Winland r35 values on Pickett plots[J]. AAPG Bulletin, 2002, 86(4): 605-624. [22] REZAEE M R, JAFARI A, KAZEMZADEH E.Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks[J]. Journal of Geophysics and Engineering, 2006, 3(4): 370-376. [23] VERWER K, EBERLI G P, WEGER R J.Effect of pore structure on electrical resistivity in carbonates[J]. AAPG Bulletin, 2011, 95(2): 175-190. [24] NORBISRATH J H, EBERLI G P, LAURICH B, et al.Electrical and fluid flow properties of carbonate microporosity types from multiscale digital image analysis and mercury injection[J]. AAPG Bulletin, 2015, 99(11): 2077-2098. [25] ZHANG K, PANG X, ZHAO Z, et al.Pore structure and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marsel area, Chu-Sarysu Basin[J]. Marine & Petroleum Geology, 2018, 93: 451-467. [26] WANG S, LUN Z, CHENG X, et al.Geochemical characteristics and genetic model of dolomite reservoirs in the eastern margin of the Pre-Caspian Basin[J]. Petroleum Science, 2012, 9(2): 161-169. [27] BARDE J P, GRALLA P, HARWIJANTO J, et al.Exploration at the eastern edge of the Precaspian Basin: Impact of data integration on Upper Permian and Triassic prospectivity[J]. AAPG Bulletin, 2002, 86(3): 399-415. [28] 赵伦, 陈烨菲, 宁正福, 等. 异常高压碳酸盐岩油藏应力敏感实验评价: 以滨里海盆地肯基亚克裂缝-孔隙型低渗透碳酸盐岩油藏为例[J]. 石油勘探与开发, 2013, 40(2): 194-200. ZHAO Lun, CHEN Yefei, NING Zhengfu, et al.Stress sensitive experiments for abnormal overpressure carbonate reservoirs: A case from the Kenkiyak low-permeability fractured-porous oilfield in the littoral Caspian Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 194-200. [29] 韩玉娇, 周灿灿, 范宜仁, 等. 基于孔径组分的核磁共振测井渗透率计算新方法: 以中东A油田生物碎屑灰岩储集层为例[J]. 石油勘探与开发, 2018, 45(1): 170-178. HAN Yujiao, ZHOU Cancan, FAN Yiren, et al.A new permeability calculation method using nuclear magnetic resonance logging based on pore sizes: A case study of bioclastic limestone reservoirs in the A oilfield of the Mid-East[J]. Petroleum Exploration and Development, 2018, 45(1): 170-178. [30] 赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935. ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al.The genetic types and distinguished characteristics of dolostone and the origin of dolostone reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935. [31] SCHMOKER J W, HALLEY R B.Carbonate porosity versus depth: A predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66(12): 2561-2570. [32] LUCIA F J.Carbonate reservoir characterization: An integrated approach[M]. Berlin: Springer, 2007: 148-156. [33] 石新, 程绪彬, 汪娟, 等. 滨里海盆地东缘石炭系KT-Ⅰ油层组白云岩地球化学特征[J]. 古地理学报, 2012, 14(6): 777-785. SHI Xin, CHENG Xubin, WANG Juan, et al.Geochemical characteristics of the Carboniferours KT-I interval dolostone in eastern margin of coastal Caspian Sea Basin[J]. Journal of Palaeogeography, 2012, 14(6): 777-785. [34] 郭凯, 程晓东, 范乐元, 等. 滨里海盆地东缘北特鲁瓦地区白云岩特征及其储层发育机制[J]. 沉积学报, 2016, 34(4): 747-757. GUO Kai, CHENG Xiaodong, FAN Leyuan, et al.Characteristics and development mechanism of dolomite reservoirs in North Truva of Eastern Pre-Caspian Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 747-757. [35] CRAIG H.The measurement of oxygen isotope paleotemperatures[M]// TONGIORGI E. Stable isotopes in oceanographic studies and paleotemperatures. Pisa: Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, 1965: 161-182. [36] KEITH M L, WEBER J N.Isotopic composition and environmental classification of selected limestones and fossils[J]. Geochem Cosmochim Acta, 1964, 28(10): 1787-1816. [37] EHRENBERG S N, EBERLI G P, KERAMATI M, et al.Porosity- permeability relationships in interlayered limestone-dolostone reservoirs[J]. AAPG Bulletin, 2006, 90(1): 91-114. [38] 徐可强. 滨里海盆地东缘中区块油气成藏特征和勘探实践[M]. 北京: 石油工业出版社, 2011: 91-105. XU Keqiang. Characteristics of hydrocarbon migration and accumulation and exploration practice in the eastern margin of the Pre-Caspian Basin[M]. Beijing: Petroleum Industry Press, 2011: 91-105. [39] 苗钱友, 朱筱敏, 李国斌, 等. 滨里海盆地M区块晚石炭世古地貌恢复与白云岩储层预测[J]. 地球科学, 2014, 39(7): 871-879. MIAO Qianyou, ZHU Xiaomin, LI Guobin, et al.Paleogeomorphology recovery and reservoir prediction of Upper Carboniferous in M Block, Pre-Caspian Basin[J]. Earth Science, 2014, 39(7): 871-879. [40] 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554. SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al.Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554. [41] LOUCKS R G.Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999, 83(11): 1795. [42] 刘东周. 滨里海叠合含油气盆地地质特征及东部盐下成藏规律研究[D]. 北京: 中国地质大学(北京), 2006. LIU Dongzhou.Petroleum geology of superimposed petroliferous Pre-Caspian Basin and hydrocarbon accumulation mechanism in pre-salt petroleum system of the east Pre-Caspian Basin[D]. Beijing: China University of Geosciences(Beijing), 2006. [43] 赵伦, 李建新, 李孔绸, 等. 复杂碳酸盐岩储集层裂缝发育特征及形成机制: 以哈萨克斯坦让纳若尔油田为例[J]. 石油勘探与开发, 2010, 37(3): 304-309. ZHAO Lun, LI Jianxin, LI Kongchou, et al.Development and genetic mechanism of complex carbonate reservoir fractures: A case from the Zanarol Oilfield, Kazakhstan[J]. Petroleum Exploration and Development, 2010, 37(3): 304-309. [44] 潘文庆, 侯贵廷, 齐英敏, 等. 碳酸盐岩构造裂缝发育模式探讨[J]. 地学前缘, 2013, 20(5): 188-195. PAN Wenqing, HOU Guiting, QI Yingmin, et al.Discussion on the development models of structural fractures in the carbonate rocks[J]. Earth Science Frontiers, 2013, 20(5): 188-195. [45] 赵欣, 姜波, 张尚锟, 等. 鄂尔多斯盆地东缘三区块煤层气井产能主控因素及开发策略[J]. 石油学报, 2017, 38(11): 1310-1319. ZHAO Xin, JIANG Bo, ZHANG Shangkun, et al.Main controlling factors of productivity and development strategy of CBM wells in Block 3 on the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(11): 1310-1319. |
|
|
|