|
|
Application of mapping and dating techniques in the study of ancient carbonate reservoirs: A case study of Sinian Qigebrak Formation in northwestern Tarim Basin, NW China |
YANG Hanxuan1,2, HU Anping1,2, ZHENG Jianfeng1,2, LIANG Feng1,2, LUO Xianying1,2, FENG Yuexing3, SHEN Anjiang1,2 |
1. PetroChina Hangzhou Research Institute of Geology (HIPG), Hangzhou 310023, China; 2. Key Laboratory of Carbonate Reservoirs, CNPC, Hangzhou 310023, China; 3. Radiogenic Isotope Facility, School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia |
|
|
Abstract Ancient marine carbonate formations experienced complex diagenetic processes, making it difficult to identify reservoir genesis and effective porosity before hydrocarbon migration. To solve these issues, we used element mapping and carbonate mineral laser U-Pb radiometric dating techniques to study the diagenetic environments based on geochemistry and diagenesis-porosity evolution based on geochronology of the dolomite reservoir of the Sinian Qigebrak Formation, northwest Tarim Basin. Two major understandings were obtained as follows: (1) On the basis of petrographic observations, the analyses element mapping, stable isotopes of carbon and oxygen, strontium isotope, and cathodoluminescence tests were performed on different phases of dolomite cements precipitated in vugs and dissolved channels. The results show that the dolomite reservoirs of the Qigebrak Formation went through freshwater, marine, extremely shallow burial, burial and hydrothermal diagenetic environments after synsedimentary dolomitization; the reservoir spaces were mainly formed in the synsedimentary period (primary pores) and freshwater environment (supergene dissolution pores) before burial; whereas the marine, burial and hydrothermal environments caused the gradual filling of reservoir space by dolomite cements. (2) Based on the above understandings, each phase of dolomite cement precipitated in the reservoir space was dated by the U-Pb radiometric technique, and the diagenesis-porosity evolution curves constrained by geochronology were established. The loss of reservoir porosity mainly occurred in the early Caledonian, during the peak period of hydrocarbon generation of Yuertusi Formation source rock, the reservoirs still maintained at a porosity of 6%-10%. The above understandings provide a certain basis for the evaluation of accumulation effectiveness of the Sinian Qigebrak Formation, northwestern Tarim Basin, and provide a case for the application of mapping and dating techniques in the study of ancient carbonate reservoirs.
|
Received: 17 February 2020
|
|
|
|
|
[1] MAZZULLO S J.Overview of porosity evolution in carbonate reservoirs[J]. Kansas Geological Society Bulletin, 2004, 79(1/2): 20-28. [2] MOORE C H.Carbonate reservoirs: Porosity, evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001. [3] LAHANN R W.A chemical model for calcite crystal growth and morphology control[J]. Journal of Sedimentary Research, 1978, 48(1): 337-347. [4] LONGMAN M W.Carbonate diagenetic textures from nearsurface diagenetic environments[J]. AAPG Bulletin, 1980, 64(4): 461-487. [5] BUDD D A.Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: Insights from pore-water chemistry[J]. Geological Society of America Bulletin, 1988, 100(8): 1260-1270. [6] BANNER J L.Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis[J]. Sedimentology, 1995, 42(5): 805-824. [7] SWART P K.The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304. [8] 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554. SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al.Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554. [9] 胡安平, 李秀芝, 蒋义敏, 等. 碳酸盐岩储层微区地球化学分析技术的发展及应用[J]. 天然气地球科学, 2014, 25(1): 116-123. HU Anping, LI Xiuzhi, JIANG Yimin, et al.Development and application of microarea geochemistry analysis technology for carbonate reservoirs[J]. Natural Gas Geoscience, 2014, 25(1): 116-123. [10] 何金有, 邬光辉, 徐备, 等. 塔里木盆地震旦系—寒武系不整合面特征及油气勘探意义[J]. 地质科学, 2010, 45(3): 698-706. HE Jinyou, WU Guanghui, XU Bei, et al.Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin[J]. Chinese Journal of Geology, 2010, 45(3): 698-706. [11] 严威, 杨果, 易艳, 等. 塔里木盆地柯坪地区上震旦统白云岩储层特征与成因[J]. 石油学报, 2019, 40(3): 295-307. YAN Wei, YANG Guo, YI Yan, et al.Characteristics and genesis of upper Sinian dolomite reservoirs in Keping area, Tarim Bain[J]. Acta Petrolei Sinica, 2019, 40(3): 295-307. [12] 杨翰轩, 沈安江, 郑剑锋, 等. 塔里木盆地西北缘震旦系奇格布拉克组微生物白云岩发育特征及储集意义[J]. 海相油气地质, 2020, 25(1): 44-54. YANG Hanxuan, SHEN Anjiang, ZHENG Jianfeng, et al.Sedimentary characteristics and reservoir significance of the microbial dolomite of Sinian Qigebrak Formation in the northwest margin of Tarim Basin[J]. Marine Origin Petroleum Geology, 2020, 25(1): 44-54. [13] 胡广, 刘文汇, 腾格尔, 等. 塔里木盆地下寒武统泥质烃源岩成烃生物组合的构造-沉积环境控制因素[J]. 石油与天然气地质, 2014, 35(5): 685-695. HU Guang, LIU Wenhui, TENGGR, et al.Tectonic-sedimentary constrains for hydrocarbon generating organism assemblage in the Lower Cambrian argillaceous source rocks, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(5): 685-695. [14] WU L, GUAN S, REN R, et al.Sedimentary evolution of Neoproterozoic rift basin in northern Tarim[J]. Petroleum Research, 2017, 2(4): 315-323. [15] 钱一雄, 何治亮, 李慧莉, 等. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨[J]. 古地理学报, 2017, 19(2): 197-210. QIAN Yixiong, He Zhiliang, LI Huili, et al.Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2): 197-210. [16] 李德伦, 张大权. 塔里木盆地北部坳陷震旦纪—奥陶纪大陆裂谷性质及其演化[J]. 长春科技大学学报, 2001, 31(2): 136-141. LI Delun, ZHANG Daquan.The characteristics and evolution of Sinian-Ordovician continental rift in the northern though of Tarim Basin[J]. Journal of Changchun University of Science and Technology, 2001, 31(2): 136-141. [17] XU B, ZOU H, CHEN Y, et al.The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236(5): 214-226. [18] 石开波, 刘波, 田景春, 等. 塔里木盆地震旦纪沉积特征及岩相古地理[J]. 石油学报, 2016, 37(11): 1343-1360. SHI Kaibo, LIU Bo, TIAN Jingchun, et al.Sedimentary characteristics and lithofacies paleogeography of Sinian in Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1343-1360. [19] 汤良杰. 略论塔里木盆地主要构造运动[J]. 石油实验地质, 1997, 19(2): 108-114. TANG Liangjie.An approach to major tectogenesis of Tarim Basin[J]. Experimental Petroleum Geology, 1997, 19(2): 108-114. [20] 张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663. ZHANG Guangya, ZHAO Wenzhi, WANG Hongjun, et al.Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28(5): 653-663. [21] 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 3-9. JIA Chengzao.Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 3-9. [22] 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074. SHEN Anjiang, HU Anping, CHENG Ting, et al.Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074. [23] ULRICH T, KAMBER B S, JUGO P J, et al.Imaging element- distribution patterns in minerals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)[J]. The Canadian Mineralogist, 2009, 47(5): 1001-1012. [24] 汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436. WANG Fangyue, GE Can, NING Siyuan, et al.A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422-3436. [25] ZHOU L, MCKENNA C A, LONG D G, et al.LA-ICP-MS elemental mapping of pyrite: An application to the Palaeoproterozoic atmosphere[J]. Precambrian Research, 2017, 297(10): 33-55. [26] UBIDE T, MOLLO S, ZHAO J, et al.Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates[J]. Geochimica et Cosmochimica Acta, 2019, 251(8): 265-283. [27] TREBLE P C, CHAPPELL J, SHELLEY J M.Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4855-4863. [28] ORTEGA R, MAIRE R, DEVÈS G, et al.High-resolution mapping of uranium and other trace elements in recrystallized aragonite-calcite speleothems from caves in the Pyrenees (France): Implication for U-series dating[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 911-923. [29] RASBURY E T, COLE J M.Directly dating geologic events: U-Pb dating of carbonates[J]. Reviews of Geophysics, 2009, 47(3): 1-27. [30] SMITH P E, FARQUHAR R M, HANCOCK R G.Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite[J]. Earth & Planetary Science Letters, 1991, 105(4): 474-491. [31] MOORBATH S, TAYLOR P N, ORPEN J L, et al.First direct radiometric dating of Archaean stromatolitic limestone[J]. Nature, 1987, 326(6116): 865-867. [32] SMITH P E, FARQUHAR R M.Direct dating of Phanerozoic sediments by the 238U- 206Pb method[J]. Nature, 1989, 341(6242): 518-521. [33] GODEAU N, DESCHAMPS P, GUIHOU A, et al.U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. Geology, 2018, 46(3): 247-250. [34] VAKS A, WOODHEAD J, BAR-MATTHEWS M, et al.Pliocene- Pleistocene climate of the northern margin of Saharan-Arabian Desert recorded in speleothems from the Negev Desert, Israel[J]. Earth & Planetary Sciences Letters, 2013, 368(3): 88-100. [35] ISRAELSON C, HALLIDAY A N, BUCHARDT B.U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale[J]. Earth and Planetary Science Letters, 1996, 141(1): 153-159. [36] LI Q, PARRISH R R, HORSTWOOD M S, et al.U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376(6): 76-83. [37] ROBERTS N M, WALKER R J.U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534. [38] PISAPIA C, DESCHAMPS P, BATTANI A, et al.U/Pb dating of geodic calcite: New insights on western Europe major tectonic events and associated diagenetic fluids[J]. Journal of the Geological Society, 2018, 175(1): 60-70. [39] ROBERTS N M, RASBURY E T, PARRISH R R, et al.A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807-2814. [40] NORMAN M D, PEARSON N J, SHARMA A, et al.Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses[J]. Geostandards Newsletter, 1996, 20(2): 247-261. [41] PATON C, HELLSTROM J, PAUL B, et al.Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. [42] LUDWIG K R.User’s manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[R]. Berkeley, California: Berkeley Geochronology Center, 2003. [43] PAN L Y, SHEN A J, SHOU J F, et al.Fluid inclusion and geochemical evidence for the origin of sparry calcite cements in Upper Permian Changxing reefal limestones, eastern Sichuan Basin (SW China)[J]. Journal of Geochemical Exploration, 2016, 171(12): 124-132. [44] TUCKER M E.Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites[J]. Geology, 1982, 10(1): 7-12. [45] HOOD A S, WALLACE M W.Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitation[J]. Sedimentary Geology, 2012, 255(7): 56-71. [46] BURNS S J, HAUDENSCHILD U, MATTER A.The strontium isotopic composition of carbonates from the late Precambrian (560-540 Ma) Huqf Group of Oman[J]. Chemical Geology, 1994, 111(1): 269-282. [47] CANFIELD D E, POULTON S W, KNOLL A H, et al.Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. [48] HOOD A S, WALLACE M W.Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia[J]. Precambrian Research, 2015, 261(6): 96-111. [49] 施泽进, 王勇, 田亚铭, 等. 四川盆地东南部震旦系灯影组藻云岩胶结作用及其成岩流体分析[J]. 中国科学: 地球科学, 2013, 43(2): 317-328. SHI Zejin, WANG Yong, TIAN Yaming, et al.Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying Formation in southeastern Sichuan Basin[J]. SCIENCE CHINA Earth Sciences, 2013, 56(2): 192-202. [50] BARNABY R J, RIMSTIDT J D.Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites[J]. Geological Society of America Bulletin, 1989, 101(6): 795-804. [51] BARNES C E, COCHRAN J K.Uranium removal in oceanic sediments and the oceanic U balance[J]. Earth and Planetary Science Letters, 1990, 97(2): 90-101. [52] KEBEDE S, TRAVI Y, ALEMAYEHU T, et al.Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia[J]. Applied Geochemistry, 2005, 20(9): 1658-1676. [53] LI Z, QIU N, CHANG J, et al.Precambrian evolution of the Tarim Block and its tectonic affinity to other major continental blocks in China: new clues from U-Pb geochronology and Lu-Hf isotopes of detrital zircons[J]. Precambrian Research, 2015, 270(15): 1-21. [54] 王小林, 胡文瑄, 陈琪, 等. 塔里木盆地柯坪地区上震旦统藻白云岩特征及其成因机理[J]. 地质学报, 2010, 84(10): 1479-1494. WANG Xiaolin, HU Wenxuan, CHEN Qi, et al.Characteristics and formation mechanism of Upper Sinian algal dolomite at the Kalpin area, Tarim Basin, NW China[J]. Acta Geologica Sinica, 2010, 84(10): 1479-1494. [55] 胡安平, 沈安江, 杨翰轩, 等. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 2019, 46(5): 916-928. HU Anping, SHEN Anjiang, YANG Hanxuan, et al.Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 916-928. [56] 郑见超, 李斌, 吴海燕, 等. 基于盆地模拟技术的烃源岩热演化史及油气关系研究: 以塔里木盆地玉尔吐斯组为例[J]. 油气地质与采收率, 2018, 25(5): 39-49. ZHENG Jianchao, LI Bin, WU Haiyan, et al.Study on the thermal history of the source rock and its relationship with hydrocarbon accumulation based on the basin modeling technology: A case of the Yuertusi Formation of Tarim Basin[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 39-49. |
[1] |
LI Weiqiang, MU Longxin, ZHAO Lun, LI Jianxin, WANG Shuqin, FAN Zifei, SHAO Dali, LI Changhai, SHAN Fachao, ZHAO Wenqi, SUN Meng. Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2020, 47(5): 958-971. |
|
|
|
|