|
|
Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China |
MA Xinhua1, XIE Jun2, YONG Rui2, ZHU Yiqing2 |
1. PetroChina Research Institute of Exploration & Development, Beijing 100083, China; 2. PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China |
|
|
Abstract The marine shale gas resources in the south of the Sichuan Basin in China have great potential. At present, the high-quality shale gas resources at buried depth of 2000-3500 m have been effectively developed, and strategic breakthroughs have been made in deeper shale gas resources at buried depth of 3500-4500 m. To promote the effective production of shale gas in this area, this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation. The results show that: (1) The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoir. The relative deep water area in deep-water shelf developed class I reservoirs with good continuity and larger thickness. The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions. Through research, the mass ratio of uranium to thorium greater than 1.25 indicates deep water in anoxic reduction environment, and the mass ratio of uranium to thorium of 0.75-1.25 indicates semi-deep water in weak reduction and weak oxidation environment, and the mass ratio of uranium to thorium less than 0.75 indicates relatively shallow water in strong oxidation environment. (2) The propped fractures in shale reservoirs are generally 10-12 m high, if the classⅠreservoirs are more than 10 m in continuous thickness, then all the propped section would be high quality reserves; in this case, the longer the continuous thickness of classⅠ reservoirs is drilled, the higher the production is. (3) The shale gas reservoirs at 3500-4500 m depth in southern Sichuan are characterized by high formation pressure, high pressure coefficient, well preserved porosity, good pore structure and high proportion of free gas, making them the most favorable new field for shale gas exploration; and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production. (4) High production wells in the deep shale gas reservoirs are those in areas where Long11- Long13 sublayer is more than 10 m thick, with 1500 m long horizontal section, class I reservoirs drilling rate of over 90%, and fractured by dense cutting + high sand adding intensity + large displacement + large liquid volume. (5) The relative deep-water area in the deep-water shelf and the area of 3500-4500 m buried depth show a good coincidence in the southern Sichuan area, and the overlapping area is the most favorable exploration and development zone for shale gas in the southern Sichuan in the future. With advancement in theory and technology, annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.
|
Received: 14 January 2020
|
|
|
|
|
[1] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. GUO Tonglou, ZHANG Hanrong.Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. [2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China: Characteristics, challenges and prospects(I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. [3] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. GUO Xusheng, HU Dongfeng, LI Yuping, et al.Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. [4] 马新华. 四川盆地天然气发展进入黄金时代[J]. 天然气工业, 2017, 47(2): 1-10. MA Xinhua.A golden era for natural gas development in the Sichuan Basin[J]. Natural Gas Industry, 2017, 47(2): 1-10. [5] 黄昌武. 中国诞生第一口百万方级页岩气井[J]. 石油勘探与开发, 2019, 46(2): 151. HUANG Changwu.China first million square shale gas well was born[J]. Petroleum Exploration and Development, 2019, 46(2): 151. [6] LI Y, HE D, CHEN L, et al.Cretaceous sedimentary basins in Sichuan, SW China: Restoration of tectonic and depositional environments[J]. Cretaceous Research, 2016, 57: 50-65. [7] 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28. LIU Shugen, DENG Bin, ZHONG Yong, et al.Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. [8] 张光亚, 童晓光, 辛仁臣, 等. 全球岩相古地理演化与油气分布(一)[J]. 石油勘探与开发, 2019, 46(4): 633-652. ZHANG Guangya, TONG Xiaoguang, XIN Renchen, et al.Evolution of lithofacies and paleogeography and hydrocarbon distribution worldwide (I)[J]. Petroleum Exploration and Development, 2019, 46(4): 633-652. [9] CHEN Xu, RONG Jiayu, LI Yue, et al.Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 204(3/4): 353-372. [10] 蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J]. 石油学报, 2010, 31(2): 57-62. PU Boling, JIANG Youlu, WANG Yi, et al.Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(2): 57-62. [11] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 78-95. ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al.Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Nature Gas Geoscience, 2016, 27(3): 78-95. [12] 陈旭, 樊隽轩, 王文卉, 等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学: 地球科学, 2017, 47(6): 720-732. CHEN Xu, FAN Junxuan, WANG Wenhui, et al.Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China[J]. SCIENCE CHINA Earth Sciences, 2017, 60(6): 1133-1146. [13] 戎嘉余. 华南奥陶、志留纪腕足动物群的更替: 兼论奥陶纪末冈瓦纳冰川活动的影响[J]. 现代地质, 1999, 13(2): 390-394. RONG Jiayu.Ordovician-Silurian brachiopod fauna turnover in South China[J]. Geoscience, 1999, 13(2): 390-394. [14] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018, 38(10): 7-16. MA Xinhua.Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 7-16. [15] 王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35(3): 12-21. WANG Yuman, DONG Dazhong, LI Xinjing, et al.Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 12-21. [16] LI Y, WANG X, WU B, et al.Sedimentary facies of marine shale gas formations in Southern China: The Lower Silurian Longmaxi Formation in the southern Sichuan Basin[J]. Journal of Earth Science, 2016, 27(5): 807-822. [17] 全国国土资源标标准化技术委员会. 页岩气资源/储量计算与评价技术规范: DZ/T 0254—2014[S]. 北京: 中国标准出版社, 2014. Land and Resources. Technical specification for calculation and evaluation of shale gas resources/reserves: DZ/T 0254—2014[S]. Beijing: Stands Press of China, 2014. [18] JARVIE D M, HILL R J, RUBLE T E, et al.Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. [19] 腾格尔, 刘文汇, 徐永昌, 等. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例[J]. 沉积学报, 2004, 22(2): 365-372. TONGER, LIU Wenhui, XU Yongchang, et al.The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica, 2004, 22(2): 365-372. [20] 周炼, 苏洁, 黄俊华, 等. 判识缺氧事件的地球化学新标志: 钼同位素[J]. 中国科学: 地球科学, 2011, 41(3): 309-319. ZHOU Lian, SU Jie, HUANG Junhua, et al.A new paleoenvironmental index for anoxic events: Mo isotopes in black shales from Upper Yangtze marine sediments[J]. SCIENCE CHINA Earth Sciences, 2011, 54(7): 1024-1033. [21] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129. [22] MURRAY R W, BRINK M R B T, GERLACH D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record[J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 1897-1913. [23] HATCH J R, LEVENTHAL J S.Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3): 65-82. [24] RAISWELL R, BERNER R A.Pyrite and organic matter in Phanerozoic normal marine shale[J]. Geochimica et Cosmochimica Acta, 1986, 50(9): 1967-1976. [25] 谢树成, 殷鸿福, 解习农, 等. 地球生物学方法与海相优质烃源岩形成过程的正演和评价[J]. 地球科学, 2007, 32(6): 727-740. XIE Shucheng, YIN Hongfu, XIE Xinong, et al.On the geobiological evaluation of hydrocarbon source rocks[J]. Earth Science, 2007, 32(6): 727-740. [26] 刘洪林, 王红岩, 方朝合, 等. 中国南方海相页岩气超压机制及选区指标研究[J]. 地学前缘, 2016, 23(2): 48-54. LIU Honglin, WANG Hongyan, FANG Chaohe, et al.The formation mechnism of over-pressure reservoir and target screening index of the marine shale in the South China[J]. Earth Science Frontiers, 2016, 23(2): 48-54. [27] 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 147-151. LIU Honglin, WANG Hongyan.Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 2013, 33(7): 147-151. [28] 陈胜, 赵文智, 欧阳永林, 等. 利用地球物理综合预测方法识别页岩气储层甜点: 以四川盆地长宁区块下志留统龙马溪组为例[J]. 天然气工业, 2017, 37(5): 20-30. CHEN Sheng, ZHAO Wenzhi, OUYANG Yonglin, et al.Comprehensive prediction of shale gas sweet spots based on geophysical properties: A case study of the Lower Silurian Longmaxi Fm in Changning block, Sichuan Basin[J]. Natural Gas Industry, 2017, 37(5): 20-30. [29] 梁正中, 余天洪. 北美超压富集页岩气研究现状及勘探启示[J]. 煤炭科学技术, 2016, 44(10): 161-166. LIANG Zhengzhong, YU Tianhong.Research status and exploration enlightenment on over-pressure and enrichment shale gas in North America[J]. Coal Science and Technology, 2016, 44(10): 161-166. [30] 杨兴业, 何生. 超压封存箱的压力封闭机制研究进展综述[J]. 地质科技情报, 2010, 29(6): 66-72. YANG Xingye, HE Sheng.Mechanisms for abnormal pressure seal in pressure compartments: A review[J]. Geological Science and Technology Information, 2010, 29(6): 66-72. [31] 刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报, 2015, 33(4): 817-827. LIU Ruobing.Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the South-eastern Part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827. [32] XIAO Xianming, WEI Qiang, GAI Haifeng, et al.Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China[J]. Petroleum Science, 2015, 12(4): 573-586. |
|
|
|