|
|
Types of the Cambrian platform margin mound-shoal complexes and their relationship with paleogeomorphology in Gucheng area, Tarim Basin, NW China |
ZHANG Junlong1,2, HU Mingyi1, FENG Zihui2, LI Qiang2, HE Xiangxiang2, ZHANG Bin2, YAN Bo2, WEI Guoqi3, ZHU Guangyou3, ZHANG You4 |
1. School of Geosciences, Yangtze University, Wuhan 430100, China;
2. Exploration and Development Research Institute, Daqing Oil Field Company Ltd., Daqing 163712, China;
3. PetroChina Research Institute of Exploration and Development, Beijing 100083, China;
4. PetroChina Hangzhou Research Institute of Geology (HIPG), Hangzhou 310023, China |
|
|
Abstract Based on the observation of outcrops and cores, thin section identification, restoration of paleogeomorphology by residual thickness method, fine description of seismic facies, etc, the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined. The Cambrian platform margin mound shoal complex is divided into mound base, mound core, mound front, mound back and mound flat microfacies, which are composed of dolomites of seven textures with facies indication. The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed, and three types of mound shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established: namely, the first stage of gentle slope symmetric accretion type, the second stage of steep slope asymmetric accretion type and the third and fourth stage of steep slope asymmetric progradation type. Their microfacies are respectively characterized by "mound base - mound back + (small) mound core + mound front - mound flat" symmetric vertical accretion structure, mound base - (large) mound core + mound front - mound flat "asymmetric vertical accretion structure, mound base - (small) mound core + mound front - mound flat" asymmetric lateral progradation structure. With most developed favorable reservoir facies belt, the steep slope asymmetric accretion type mound- hoal complex with the characteristics of "big mound and small shoal" is the exploration target for large-scale oil and gas reservoir.
|
Received: 01 December 2019
Published: 16 September 2020
|
|
|
|
|
Cite this article: |
ZHANG Junlong,HU Mingyi,FENG Zihui, et al. Types of the Cambrian platform margin mound-shoal complexes and their relationship with paleogeomorphology in Gucheng area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 0, (): 20201211-20201211.
|
|
|
|
URL: |
http://www.cpedm.com/EN/ OR http://www.cpedm.com/EN/Y0/V/I/20201211 |
[1] GROTZINGER J, AL-RAWAHI Z.Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran Cambrian Ara Group, Sultante of Oman[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
[2] REZENDE M F, POPE M C.Importance of depositional texture in pore characterization of subsalt microbialite carbonates, offshore Brazil[C]//Microbial carbonates in space and time: Implications for global exploration and production. London: Geological Society Special Publications, 2015, 418: 193-207.
[3] HU Mingyi, GAO Da, WEI Guoqi.Sequence stratigraphy and facies architecture of a moundshoal-dominated dolomite reservoir in the late Ediacaran Dengying Formation, central Sichuan Basin, SW China[J]. Geological Journal, 2019, 54: 1653-1671.
[4] 罗平, 王石, 李朋威, 等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报, 2013, 31(5): 807-823.
LUO Ping, WANG Shi, LI Pengwei, et al.Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823.
[5] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al.Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[6] HU Mingyi, NGIA N R, GAO Da.Dolomitization and hydrotectonic model of burial dolomitization of the Furongian-Lower Ordovician carbonates in the Tazhong Uplift, central Tarim Basin, NW China: Implications from petrography and geochemistry[J]. Marine and Petroleum Geology, 2019, 106: 88-115.
[7] 胡文宣, 朱井泉, 王小林, 等. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义[J]. 石油与天然气地质, 2014, 35(6): 860-869.
HU Wenxuan, ZHU Jingquan, WANG Xiaolin, et al.Characteristics, origin and geological implications of the Cambrian microbial dolomite in Keping Area, Tarim Basin[J]. Oil and Gas Geology, 2014, 35(6): 860-869.
[8] 赵文智, 沈安江, 周进高, 等. 礁滩储集层类型、特征、成因及勘探意义: 以塔里木和四川盆地为例[J]. 石油勘探与开发, 2014, 42(2): 137-149.
ZHAO Wenzhi, SHEN Anjiang, ZHOU Jingao, et al.Types, characteristics, origin and exploration significance of reef-shoal reservoirs: A case study of Tarim Basin, NW China and Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 257-267.
[9] 谷志东, 殷积峰, 袁苗, 等. 四川盆地东部深层盐下震旦系—寒武系天然气成藏条件与勘探方向[J]. 石油勘探与开发, 2015, 42(2): 137-149.
GU Zhidong, YIN Jifeng, YUAN Miao, et al.Accumulation conditions and exploration directions of natural gas in deep subsalt Sinian-Cambrian System in the eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(2): 137-149.
[10] 宋金民, 罗平, 杨士升, 等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 2014, 41(4): 404-503.
SONG Jinmin, LUO Ping, YANG Shisheng, et al.Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(4): 404-503.
[11] 李朋威, 罗平, 宋金民, 等. 微生物碳酸盐岩储层特征与主控因素: 以塔里木盆地西北缘上震旦统—下寒武统为例[J]. 石油学报, 2015, 36(9): 1074-1089.
LI Pengwei, LUO Ping, SONG Jinmin, et al.Characteristics and main controlling factors of microbial carbonate reservoirs: A case study of Upper Sinian-Lower Cambrian in the northwestern margin of Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(9): 1074-1089.
[12] 黄擎宇, 胡素云, 潘文庆, 等. 台内微生物丘沉积特征及其对储层发育的控制: 以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例[J]. 天然气工业, 2016, 36(6): 21-29.
HUANG Qingyu, HU Suyun, PAN Wenqing, et al.Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Fm in the Keping-Bachu Area, Tarim Basin[J]. Natural Gas Industry, 2016, 36(6): 21-29.
[13] 白莹, 罗平, 王石, 等. 台缘微生物礁结构特点及储集层主控因素: 以塔里木盆地阿克苏地区下寒武统肖尔布拉克组为例[J]. 石油勘探与开发, 2017, 44(3): 349-358.
BAI Ying, LUO Ping, WANG Shi, et al.Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, Lower Cambrian, Aksu Area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 349-358.
[14] 陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征、成因和分布: 以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715.
CHEN Ya’na, SHEN Anjiang, PAN Liyin, et al.Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715.
[15] 兰才俊, 徐哲航, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体发育分布及对储层的控制[J]. 石油学报, 2019, 40(9): 1069-1084.
LAN Caijun, XU Zhehang, MA Xiaolin, et al.Development and distribution of mound shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoirs[J]. Acta Petrolei Sinica, 2019, 40(9): 1069-1084.
[16] 宋金民, 罗平, 杨式升, 等. 塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征[J]. 古地理学报, 2012, 14(3): 341-254.
SONG Jinmin, LUO Ping, YANG Shisheng, et al.Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak area, Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(3): 341-254.
[17] 陈辉, 郭海洋, 徐祥恺, 等. 四川盆地剑阁—九龙山地区长兴期与飞仙关期古地貌演化特征及其对礁滩体的控制[J]. 石油与天然气地质, 2016, 37(6): 854-861.
CHEN Hui, GUO Haiyang, XU Xiangkai, et al.Features of paleogeomorphological evolution and its control on reef flat composite in Changxing-Feixianguan Formation in Jiange-Jiulongshan region, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6): 854-861.
[18] 徐欣, 胡明毅, 高达. 磨溪—高石梯地区灯影组四段微生物岩沉积特征及主控因素[J]. 中国海上油气, 2018, 30(2): 25-34.
XU Xin, HU Mingyi, GAO Da.Sedimentary characteristics and main control factors for microbialite of the fourth Member of Dengying Formation in Moxi-Gaoshiti Area, central Sichuan Basin[J]. China offshore Oil and Gas, 2018, 30(2): 25-34.
[19] 张君龙, 冯子辉, 李强, 等. 塔里木盆地古城台缘带寒武系丘滩体气藏形成特征[J]. 石油实验地质, 2018, 40(5): 655-662.
ZHANG Junlong, FENG Zihui, LI Qiang, et al.Evolution of Cambrian mound-beach gas reservoirs in Gucheng platform margin zone,Tarim Basin[J]. Petroleum Geology & Experiment, 2018, 40(5): 655-662.
[20] 曹颖辉, 王珊, 张亚金, 等.塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发, 2019, 46(6): 1099-1114.
CAO Yinghui, WANG Shan, ZHANG Yajin, et al.Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng Area, Tarim Basin, China[J]. Petroleum Exploration and Development, 2019, 46(6): 1099-1114.
[21] 赵宗举, 罗家洪, 张运波, 等. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 2011, 32(6): 937-948.
ZHAO Zongju, LUO Jiahong, ZHANG Yunbo, et al.Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 2011, 32(6): 937-948.
[22] 陈永权, 严威, 韩长伟, 等. 塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定: 基于地震证据的新认识[J]. 天然气地球科学, 2015, 26(10): 1831-1843.
CHEN Yongquan, YAN Wei, HAN Changwei, et al.Redefinition onstructural paleogeography and lithofacies aleogeography frameworkfrom Cambrian to Early Ordovician in the Tarim Basin: A newapproach based on seismic stratigraphy evidence[J]. Natural Gas Geoscience, 2015, 26(10): 1831-1843.
[23] 任延广, 张君龙, 齐景顺, 等. 塔东地区寒武—奥陶系碳酸盐岩沉积特征及演化规律[J]. 大庆石油地质与开发, 2015, 33(5): 103-110.
REN Yanguang, ZHANG Junlong, QI Jingshun, et al.Sedimentary characteristics of Cambrian-Ordovician carbonate rocks in the Tadong region and its evolution law[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 33(5): 103-110.
[24] 范嘉松, 张维. 生物礁的基本概念、分类及识别特征[J]. 岩石学报, 1985, 1(3): 45-59.
FAN Jiasong, ZHANG Wei.On the basic concept and classification of organic reefs and their main identifying criteria[J]. Acta Petrologica Sinica, 1985, 1(3): 45-59.
[25] 金民东, 谭秀成, 童明胜, 等. 四川盆地高石梯—磨溪地区灯四段岩溶古地貌恢复及地质意义[J]. 石油勘探与开发, 2017, 44(1): 58-68.
JIN Mindong, TAN Xiucheng, TONG Mingsheng, et al.Karst paleogeomorphology of the fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi Area, Sichuan Basin, SW China: Restoration and geological significance[J]. Petroleum Exploration and Development, 2017, 44(1): 58-68.
[26] 朱茂, 沈安江, 曾洪流, 等. 古地貌恢复在岩溶风化壳储层研究中的应用: 以川中磨溪地区灯影组四段为例[J]. 海相油气地质,2018, 23(4): 87-95.
ZHU Mao, SHEN Anjiang, ZENG Hongliu, et a1. The application of paleogeomorphy restoration to the study of karst weathering crust reservoir: A case from the fourth member of Dengying Formation Moxi Area, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2018, 23(4): 87-95.
[27] 龚洪林, 姚清州, 敬兵. 一种精细古地貌恢复方法: 以塔中西部下奥陶统碳酸盐岩潜山为例[J]. 新疆石油天然, 2019, 15(1): 1-4
GONG Honglin, YAO Qingzhou, JING Bing.A fine storation method of aegeomorphology- Taking the Lower Ordovcian carbonate buried-hill in the west of Tazhong area as an example[J]. Xinjiang Oil & Gas, 2019, 15(1): 1-4.
[28] 熊冉, 周进高, 倪新锋, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义[J]. 天然气工业, 2015, 35(10): 49-56.
XIONG Ran, ZHOU Jingao, NI Xinfeng, et a1. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim Basin[J]. Natural Gas Industry, 2015, 35(10): 49-56.
[29] 高志前, 樊太亮, 杨伟红, 等. 塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J]. 吉林大学学报(地球科学版), 2012, 42(3): 657-665.
GAO Zhiqian, FAN Tailiang, YANG Weihong, et al.Structure characteristics and evolution of the Eopaleozoic carbonate platform in Tarim Basin[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(3): 657-665.
[30] 胡明毅, 孙春燕, 高达. 塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征[J]. 石油与天然气地质, 2019, 40(01): 12-23.
HU Mingyi, SUN Chunyan, GAO Da.Characteristics of tectoniclithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation,Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1): 12-23.
[31] 顾家裕, 马锋, 季丽丹. 碳酸盐岩台地类型、特征及主控因素[J].古地理学报, 2009, 11(1): 21-27.
GU Jiayu, MA Feng, JI Lidan.Types,characteristics and main controlling factors of carbonateplatform[J]. Journal of Palaeogeography, 2009, 11(1): 21-27.
[32] 石平舟, 王振宇, 东玉, 等. 台缘礁分类、特征、发育模式及与可容空间耦合关系: 以塔里木盆地中东部地区良里塔格组良二段为例[J].天然气地球科学, 2019, 30(5): 673-685.
SHI Pingzhou, WANG Zhenyu, DONG Yu, et al.The classification, characteristics and development model and coupling relation with different accommodation space of platform margin reef: Case study of L2 Member of Liangltage Formation in the eastern Tazhong Area, Tarim Basin[j]. Natural Gas Geoscience, 2019, 30(5): 673-685.
[33] 王亚青, 董春梅, 邢焕清. 可容空间的研究进展[J]. 海洋地质前沿, 2004, 20(10): 32-35.
WANG Yaqing, DONG Chunmei, XING Huanqing.The research progress of accommodation space[J]. Marine Geology Frontiers, 2004, 20(10): 32-35.
[34] 沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43(3): 340-349.
SHEN Anjiang, ZHENG Jianfeng, CHEN Yongquan, et al.Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 340-349.
[35] 余浩元, 蔡春芳, 郑剑锋, 等. 微生物结构对微生物白云岩孔隙特征的影响: 以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 石油实验地质, 2018, 40(2): 233-243.
YU Haoyuan, CAI Chunfang, ZHENG Jianfeng, et al.Influence of microbial textures on pore characteristics of microbial dolomites: A case study of lower Cambrian Xiaoerbulake Formation in Keping Area, Tarim Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 233-243.
[36] 乔占峰, 沈安江, 倪新锋, 等. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义[J]. 石油与天然气地质, 2019, 40(2): 392-402.
QIAO Zhanfeng, SHEN Anjiang, NI Xinfeng, et al.Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin, Northwest China,and its implications for exploration[J]. Oil & Gas Geology, 2019, 40(2): 392-402.
[37] 郑剑锋, 潘文庆, 沈安江, 等. 塔里木盆地柯坪露头区寒武系肖尔布拉克组储集层地质建模及其意义[J]. 石油勘探与开发, 2020, 47(3): 1-13.
ZHENG Jianfeng, PAN Wenqing, SHEN Anjiang, et al.Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 1-13.
[38] NGIA N R, HU Mingyi, GAO Da.Tectonic and geothermal controls on dolomitization and dolomitizing fluidflows in the Cambrian- Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2019, 172: 359-382.
[39] 王坤, 刘伟, 胡再元, 等. 多重流体介质下塔里木盆地古城寒武系碳酸盐岩储层形成与保存[J]. 东北石油大学学报, 2016, 40(1): 80-88.
WANG Kun, LIU Wei, HU Zaiyuan, et al.Formation and protection of the carbonate reservoir of Cambrian under multiple fluid medium, Gucheng, Tarim Basin[J]. Journal of Northeast Petroleum University, 2016, 40(1): 80-88.
[40] 曹颖辉, 李洪辉, 闫磊, 等. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
CAO Yinghui, LI Honghui, YAN Lei, et al.The sectional chatacteristics of Cambrian platform margin in Manxi area of Tarim Basin and its differences in souce-reservoir-cap combination conditions[J]. Natural Gas Geoscience, 2018, 29(6): 796-806.
[41] 倪新锋, 沈安江, 陈永权, 等. 塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示[J]. 天然气地球科学, 2015, 26(7): 245-1255.
NI Xinfeng, SHEN Anjiang, CHEN Yongquan, et al.Cambrian carbonate platform types, platform margin segmentation characteristics and exploration enlightenment in Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1245-1255. |
[1] |
PARIDIGULI Busuke, XIE Huiwen, CHENG Xiaogan, WU Chao, ZHANG Yuqing, XU Zhenping, LIN Xiubin, CHEN Hanlin. Deformation features and tectonic transfer of the Gumubiezi Fault in the northwestern margin of Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4): 703-712. |
|
|
|
|