|
|
Response laws of rock electrical property and saturation evaluation method of tight sandstone |
LI Xia1, LI Chaoliu1, LI Bo2, LIU Xuefeng3, YUAN Chao1 |
1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 2. Sinopec Shengli Petroleum Engineering Co., Ltd, Bohai Drilling Corporation, Dongying 257200, China; 3. College of Science, China University of Petroleum (East China), Qingdao 266580, China |
|
|
Abstract To solve the problem that the law of rock electrical response under low and medium water saturation in tight sandstone reservoirs is not clear, an experimental method of high-speed centrifugal displacement rock electricity and nuclear magnetic resonance T2 spectrometry under different water saturation was proposed, which can drive the tight sandstone cores with the permeability less than 0.1×10-3 μm2, and provide a reliable experimental means for the study of tight sandstone electrical property. By carrying out supporting experiments such as high-resolution CT scan, MAPS and Qemscan, a multi-mineral component fine three-dimensional digital core based on multi-source information fusion was constructed. The finite element numerical simulation method was used to obtain the electrical response of tight sandstone core with low water saturation which cannot be obtained in laboratory conditions. By combining experiment and numerical simulation, the electrical response laws have been clear of tight sandstone with complex pore structure, and the saturation evaluation method of variable rock electrical parameters based on pore structure has been developed. The processing of logging data of multiple wells in tight sandstone reservoir of Chang 7 Member in the Ordos Basin shows that this method can obtain more accurate oil saturation, and provides a new idea and method for fine logging evaluation of tight sandstone reservoir.
|
Received: 20 May 2019
|
|
|
|
|
[1] 赵政璋, 杜金虎. 非常规油气资源现实的勘探开发领域: 致密油气[M]. 北京: 石油工业出版社, 2012: 1-10. ZHAO Zhengzhang, DU Jinhu.Exploration and development of unconventional oil and gas resources of reality: Tight oil and gas[M]. Beijing: Petroleum Industry Press, 2012: 1-10. [2] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 北京: 地质出版社, 2011. ZOU Caineng, TAO Shizhen, HOU Lianhua, et al.Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011. [3] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026. SUN Longde, ZOU Caineng, JIA Ailin, et al.Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026. [4] 杜金虎, 何海清, 杨涛, 等. 中国致密油勘探进展及面临的挑战[J]. 中国石油勘探, 2014, 19(1): 1-9. DU Jinhu, HE Haiqing, YANG Tao, et al.Progress in China’s tight oil exploration and challenges[J]. China Petroleum Exploration, 2014, 19(1): 1-9. [5] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探开发, 2013, 40(2): 150-155. YAO Jingli, DENG Xiuqin, ZHAO Yande, et al.Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-155. [6] 李潮流, 李长喜, 侯雨庭, 等. 鄂尔多斯盆地延长组长7段致密储集层测井评价[J]. 石油勘探与开发, 2015, 42(5): 608-614. LI Chaoliu, LI Changxi, HOU Yuting, et al.Well logging evaluation of Triassic Chang 7 Member tight reservoirs, Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 608-614. [7] 张哨楠, 丁晓琪. 鄂尔多斯盆地南部延长组致密砂岩储层特征及其成因[J]. 成都理工大学学报(自然科学版), 2010, 37(4): 386-390. ZHANG Shaonan, DING Xiaoqi.Characters and causes of tight sandstones of Yanchang Formation in southern Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(4): 386-390. [8] 曾文冲. 油气藏储集层测井评价新技术[M]. 北京: 石油工业出版社, 1991. ZENG Wenchong.New technology of oil-gas reservoir logging evaluation[M]. Beijing: Petroleum Industry Press, 1991. [9] 闫建平, 温丹妮, 李尊芝, 等. 低渗透砂岩孔隙结构对岩电参数的影响及应用[J]. 天然气地球科学, 2015, 26(12): 2227-2233. YAN Jianping, WEN Danni, LI Zunzhi, et al.The influence of low permeable sandstone pore structure on rock electrical parameters and its applications[J]. Natural Gas Geoscience, 2015, 26(12): 2227-2233. [10] 孙建国. 阿尔奇(Archie)公式: 提出背景与早期争论[J]. 地球物理学进展, 2007, 22(2): 472-484. SUN Jianguo.Archie’s formula: Historical background and earlier debates[J]. Progress in Geophysics, 2007, 22(2): 472-484. [11] 胡胜福, 周灿灿, 李霞, 等. 复杂孔隙结构致密砂岩饱和度新模型[J]. 石油勘探与开发, 2017, 44(5): 827-836. HU Shengfu, ZHOU Cancan, LI Xia, et al.A tight sandstone trapezoidal pore oil saturation model[J]. Petroleum Exploration and Development, 2017, 44(5): 827-836. [12] 李霞, 赵文智, 周灿灿, 等. 低孔低渗碎屑岩储集层双孔隙饱和度模型[J]. 石油勘探与开发, 2012, 39(1): 82-91. LI Xia, ZHAO Wenzhi, ZHOU Cancan, et al.Dual-porosity saturation model of low-porosity and low- permeability clastic reservoirs[J]. Petroleum Exploration and Development, 2012, 39(1): 82-91. [13] 毛志强, 高楚桥. 孔隙结构与含油岩石电阻率性质理论模拟研究[J]. 石油勘探与开发, 2000, 27(2): 87-90. MAO Zhiqiang, GAO Chuqiao.Theoretical simulation of the resistivity and pore structure of hydrocarbon bearing rocks[J]. Petroleum Exploration and Development, 2000, 27(2): 87-90. [14] SWANSON B F.Microporosity in reservoir rocksits measurement and influence on electrical resistivity[R]. Texas: SPWLA 26th Annual Logging Symposium, 1985. [15] CRANE S D.Impacts of microporosity, rough pore surface and conductive minerals on saturation calculations form electric measurements: An extended Archie's Law[R]. Louisiana: SPWLA 31st Annual Logging Symposium, 1990. [16] 毛志强, 章成广. 油藏条件下孔隙岩样毛管和电学性质研究[J]. 地球物理学进展, 1995, 10(1): 76-89. MAO Zhiqiang, ZHANG Chengguang.The study of capillary and electrical properties of porous rock samples at reservoir conditions[J]. Progress in Geophysics, 1995, 10(1): 76-89. [17] 张明禄, 石玉江. 复杂孔隙结构砂岩储集层岩电参数研究[J]. 测井技术, 2005, 29(5): 446-448. ZHANG Minglu, SHI Yujiang.On Archie’s electrical parameters of sandstone reservoir with complicated pore structures[J]. Well Logging Technology, 2005, 29(5): 446-448. [18] 王秀娟, 王明磊, 赵爱彬. 鄂尔多斯盆地延长组长7致密油储层微观特征[J]. 岩性油气藏, 2014, 26(3): 79-83. WANG Xiujuan, WANG Minglei, ZHAO Aibin.Microscopic characteristics of chang7 tight sandstone reservoir in Ordos Basin[J]. Lithologic Reservoirs, 2014, 26(3): 79-83. [19] 崔景伟, 朱如凯, 吴松涛, 等. 致密砂岩层内非均质性及含油下限: 以鄂尔多斯盆地三叠系延长组长7段为例[J]. 石油学报, 2013, 34(5): 877-882. CUI Jingwei, ZHU Rukai, WU Songtao, et al.Heterogeneity and lower oily limits for tight sandstones: A case study on Chang-7 oil layers of the Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(5): 877-882. [20] 王勖成, 邵敏. 有限元法基本原理和数值方法[M]. 2版. 北京: 清华大学出版社, 1997. WANG Xucheng, SHAO Min.The basic principles of finite element method and numerical methods[M]. 2nd ed. Beijing: Tsinghua University Press, 1997. [21] 陈锡栋, 杨婕, 赵晓栋, 等. 有限元法的发展现状及应用[J]. 中国制造业信息化, 2010, 39(11): 6-8. CHEN Xidong, YANG Jie, ZHAO Xiaodong, et al.The status and development of finite element method[J]. Manufacture Information Engineering of China, 2010, 39(11): 6-8. [22] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998. XIAO Lizhi.The technology and application of magnetic resonance imaging logging and rock NMR[M]. Beijing: Science Press, 1998. [23] YAN Jianping, HE Xu, GENG Bin, et al.Nuclear magnetic resonance T2 spectrum multifractal characteristics and pore structure evaluation[J]. Applied Geophysics, 2017, 14(2): 205-215. |
|
|
|