|
|
Cenozoic structural deformation in the Yuqia-Jiulongshan region, northern Qaidam Basin, China |
CHEN Siyuan1,2, ZHANG Yongshu3, WU Lei1,2, ZHANG Junyong4, WANG Liqun3, XIAO Ancheng1,2, SHEN Ya4 |
1. School of Earth Science, Zhejiang University, Hangzhou 310012, China; 2. Research Center for Structures in Oil & Gas Bearing Basins, Hangzhou 310012, China; 3. Exploration & Development Research Institute of Qinghai Oilfield Company, PetroChina, Dunhuang 736202, China; 4. GRI, BGP Inc., CNPC, Zhuozhou 072751, China |
|
|
Abstract Based on field geological survey, interpretation of seismic reflection profile and thermochronology dating, this paper systematically studied the structural deformation of the Yuqia-Jiulongshan region in northern Qaidam Basin during the Cenozoic. The results show that the area is primarily dominated by a large box-shaped anticline, with steep limbs and a wide and gently-deformed core. The Mahaigaxiu and Jiulongshan anticlines are secondary folds controlled by secondary faults in the limbs of the box-shaped anticline. Whereas the Yuqia and the Northern Yuqia anticlines are secondary folds within the wide core of the box-shaped anticline. The geometry of the box-shaped anticline is mainly controlled by some high-angle reverse faults with certain right-lateral strike-slip components, displaying distinct positive flower structures in section view. Combining the sedimentary correlation and detrital apatite fission track analysis, we believe that the Yuqia-Jiulongshan region was a paleo-uplift that developed slightly in the early Cenozoic, resulting in the relatively thin Cenozoic strata. The intense deformation that shaped the present-day structural framework occurred in or after the sedimentary period of Shizigou Formation. The Yuqia - Jiulongshan paleo-uplift is adjacent to the Sainan depression that is rich in Lower-Middle Jurassic source rocks, and thus has high potential for future hydrocarbon exploration.
|
Received: 14 May 2019
|
|
|
|
|
[1] 肖安成, 杨树锋, 程晓敢, 等. 柴达木盆地北缘的右行走滑冲断系统及其动力学[J]. 石油与天然气地质, 2006, 27(4): 482-487, 494. XIAO Ancheng, YANG Shufeng, CHEN Xiaogan, et al.Right-lateral strike-slip thrust system and its dynamics along the northern margin of Qaidam Basin[J]. Oil & Gas Geology, 2006, 27(4): 482-487, 494. [2] YIN A, DANG Y Q, WANG L C, et al.Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin[J]. Geological Society of America Bulletin, 2008, 120(7): 813-846. [3] 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991. Bereau of Geology and Mineral Resources of Qinghai Province. Regional geology of Qinghai province[M]. Beijing: Geological Publishing House, 1991. [4] 宋春晖. 青藏高原北缘新生代沉积演化与高原构造隆升过程[D]. 兰州: 兰州大学, 2006. SONG Chunhui.Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2006. [5] ZHUANG G S, HOURIGAN J K, RITTS B D, et al.Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, northwest China[J]. American Journal of Science, 2011, 311(2): 116-152. [6] TAPPONNIER P, XU Z Q, ROGER F, et al.Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. [7] WANG W T, ZHENG W J, ZHANG P Z, et al.Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8: 15887. [8] YIN A, HARRISON T M.Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. [9] YIN A, RUMELHART P E, BUTLER R, et al.Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10): 1257-1295. [10] 夏志远, 刘占国, 李森明, 等. 柴达木盆地坪西地区副变质岩储集层特征[J]. 石油勘探与开发, 2019, 46(1): 89-99. XIA Zhiyuan, LIU Zhanguo, LI Senming, et al.Characteristics of parametamorphic rock reservoirs in Pingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 89-99. [11] JI J L, ZHANG K X, CLIFT P D, et al.High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 2017, 46: 141-155. [12] BUSH M A, SAYLOR J E, HORTON B K, et al.Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 2016, 8(1): 58-82. [13] LU H J, YE J C, GUO L C, et al.Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam Basin[J]. Lithosphere, 2018, 11(2): 252-272. [14] WANG Q M, COWARD M P. The Chaidam Basin(NW China): Formation and hydrocarbon potential[J]. Journal of Petroleum Geology, 1990, 13(1): 93-112. [15] 戴俊生, 曹代勇. 柴达木盆地构造样式的类型和展布[J]. 西北地质科学, 2000(2): 57-63. DAI Junsheng, CAO Daiyong.The type and distribution of structural style in Qaidam Basin[J]. Northwest Geoscience, 2000(2): 57-63. [16] 胡受权, 郭文平, 曹运江, 等. 柴达木盆地北缘构造格局及在中、新生代的演化[J]. 新疆石油地质, 2001, 22(1): 13-16. HU Shouquan, GUO Wenping, CAO Yunjiang, et al.Tectonic Framework and Structure Evolution of Mesozoic and Cenozoic in Northern Margin of Qaidam Basin[J]. Xinjiang Petroleum Geology, 2001, 22(1): 13-16. [17] 王步清, 肖安成, 程晓敢, 等. 柴达木盆地北缘新生代右行走滑冲断构造带的几何学和运动学[J]. 浙江大学学报(理学版), 2005, 32(2): 225-230. WANG Buqing, XIAO Ancheng, CHEN Xiaogan, et al.Geometry and kinematics of Cenozoic right-lateral strike-slip thrust structural belt in the north margin of the Qaidam Basin[J]. Journal of Zhejiang University(Science Edition), 2005, 32(2): 225-230. [18] MAO L G, XIAO A C, ZHANG H W, et al.Structural deformation pattern within the NW Qaidam Basin in the Cenozoic era and its tectonic implications[J]. Tectonophysics, 2016, 687: 78-93. [19] 王根厚, 冉书明, 李明. 柴达木盆地北缘赛什腾—锡铁山左行逆冲断裂及地质意义[J]. 地质力学学报, 2001, 7(3): 224-230. WANG Genhou, RAN Shuming, LI Ming.The characteristics of Neogene Sertengshan-Xietieshan oblique thrust fault in the Northern margin of Qaidam Basin[J]. Journal of Geomechanics, 2001, 7(3): 224-230. [20] 吴珍汉, 胡道功, 吴中海, 等. 柴达木盆地北缘第四纪左旋斜冲推覆构造运动[J]. 第四纪研究, 2009, 29(3): 599-607. WU Zhenhan, HU Daogong, WU Zhonghai, et al.Quaternary sinistral-slip thrusting in North margin of Qaidam Basin[J]. Quaternary Sciences, 2009, 29(3): 599-607. [21] RITTS B D, HANSON A D, ZINNIKER D, et al.Lower-Middle Jurassic nonmarine source rocks and petroleum systems of the northern Qaidam Basin, northwest China[J]. AAPG Bulletin, 1999, 83(12): 1980-2005. [22] PANG X Q, LI Y X, JIANG Z X.Key geological controls on migration and accumulation for hydrocarbons derived from mature source rocks in Qaidam Basin[J]. Journal of Petroleum Science and Engineering, 2004, 41(1/2/3): 79-95. [23] 魏国齐, 李本亮, 肖安成, 等. 柴达木盆地北缘走滑-冲断构造特征及其油气勘探思路[J]. 地学前缘, 2005, 12(4): 397-402. WEI Guoqi, LI Benliang, XIAO Ancheng, et al.Strike-thrust structures and petroleum exploration in northern Qaidam Basin[J]. Earth Science Frontiers, 2005, 12(4): 397-402. [24] 李明义, 岳湘安, 江青春, 等. 柴达木盆地北缘主要构造带构造演化与油气成藏关系[J]. 天然气地球科学, 2012, 23(3): 461-468. LI Mingyi, YUE Xiang’an, JIANG Qingchun, et al.Relationship between hydrocarbon accumulation and tectonic evolution in main structural belt of the northern border of Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(3): 461-468. [25] 方世虎, 赵孟军, 张水昌, 等. 柴达木盆地北缘构造控藏特征与油气勘探方向[J]. 地学前缘, 2013, 20(5): 132-138. FANG Shihu, ZHAO Mengjun, ZHANG Shuichang, et al.Structural control on hydrocarbon accumulation and its implication for petroleum exploration in Northern Qaidam Basin[J]. Earth Science Frontiers, 2013, 20(5): 132-138. [26] 任收麦, 包书景, 张毅, 等. 柴达木盆地北缘侏罗系页岩气地质条件[J]. 地质通报, 2016, 35(2/3): 204-210. REN Shoumai, BAO Shujing, ZHANG Yi, et al.Geological conditions of the Jurassic shale gas on the northern margin of Qaidam Basin[J]. Geological Bulletin of China, 2016, 35(2/3): 204-210. [27] 孙晓禹, 鲁静, 李鹏举, 等. 柴达木盆地鱼卡地区中侏罗统沉积环境与古地理[J]. 内蒙古煤炭经济, 2019(2): 159-160. SUN Xiaoyu, LU Jing, LI Pengju, et al.Middle Jurassic sedimentary environment and paleogeography in Yuqia Region, Qaidam Basin[J]. Inner Mongolia Coal Economy, 2019(2): 159-160. [28] 付锁堂, 肖安成, 汪立群. 柴达木盆地典型构造剖面[M]. 北京: 科学出版社, 2013: 286. FU Suotang, XIAO Ancheng, WANG Liqun.Typical structural sections of Qaidam Basin[M]. Beijing: Science Press, 2013: 286. [29] FANG X M, ZHANG W L, MENG Q, et al.High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306. [30] WEI Y Y, XIAO A C, WU L, et al.Temporal and spatial patterns of Cenozoic deformation across the Qaidam Basin, Northern Tibetan Plateau[J]. Terra Nova, 2016, 28(6): 409-418. [31] 田云涛, 朱传庆, 徐明, 等. 白垩纪以来米仓山—汉南穹窿剥蚀过程及其构造意义: 磷灰石裂变径迹的证据[J]. 地球物理学报, 2010, 53(4): 920-930. TIAN Yuntao, ZHU Chuanqing, XU Ming, et al.Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: Evidences from Apatite fission track analysis[J]. Chinese Journal of Geophysics, 2010, 53(4): 920-930. [32] 肖安成, 陈志勇, 杨树锋, 等. 柴达木盆地北缘晚白垩世古构造活动的特征研究[J]. 地学前缘, 2005, 12(4): 451-457. XIAO Ancheng, CHEN Zhiyong, YANG Shufeng, et al.The study of Late Cretaceous paleostructural characteristics in northern Qaidam Basin[J]. Earth Science Frontiers, 2005, 12(4): 451-457. [33] WU L, XIAO A C, WANG L, et al.Late Jurassic-early Cretaceous northern Qaidam Basin, NW China: Implications for the earliest Cretaceous intracontinental tectonism[J]. Cretaceous Research, 2011, 32(4): 552-564. [34] QIU N S.Tectono-thermal evolution of the Qaidam Basin, China: Evidence from Ro and apatite fission track data[J]. Petroleum Geoscience, 2002, 8(3): 279-285. [35] KETCHAM R A.Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 275-314. [36] 刘志宏, 万传彪, 杨建国, 等. 柴达木盆地北缘地区新生代构造特征及变形规律[J]. 地质科学, 2005, 40(3): 404-414. LIU Zhihong, WAN Chuanbiao, YANG Jianguo, et al.Cenozoic structural features and deformation regularities of the northern Qaidam Basin, China[J]. Chinese Journal of Geology, 2005, 40(3): 404-414. [37] ZHUANG G S, BRANDON M T, PAGANI M, et al.Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390: 186-198. [38] ZHUANG G S, JOHNSTONE S A, HOURIGAN J, et al.Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers[J]. Gondwana Research, 2018, 58: 195-210. [39] JOLIVET M, BRUNEL M, SEWARD D, et al.Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints[J]. Tectonophysics, 2001, 343(1/2): 111-134. [40] 关平, 简星. 青藏高原北部新生代构造演化在柴达木盆地中的沉积记录[J]. 沉积学报, 2013, 31(5): 824-833. GUAN Ping, JIAN Xing.The Cenozoic sedimentary record in Qaidam Basin and its implications for tectonic evolution of northern Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2013, 31(5): 824-833. [41] CHEN X G, LIN X B, WU L, et al.The exhumation history of north Qaidam thrust belt constrained by apatite fission track thermochronology: Implication for the evolution of the Tibetan Plateau[J]. Acta Geologica Sinica, 2016, 90(3): 870-883. [42] JIAN X, GUAN P, ZHANG W, et al.Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam Basin[J]. Gondwana Research, 2018, 60: 94-104. [43] 汪立群, 徐凤银, 庞雄奇, 等. 马海—大红沟凸起油气勘探成果与柴达木盆地北缘的勘探方向[J]. 石油学报, 2005, 26(3): 21-25. WANG Liqun, XU Fengyin, PANG Xiongqi, et al.Potential exploration targets of the northern margin of Qaidam Basin suggested from the breakthrough of Mahai-Dahonggou Uplift[J]. Acta Petrolei Sinica, 2005, 26(3): 21-25. [44] 万景林, 郑德文, 郑文俊, 等. MDD法和裂变径迹法相结合模拟样品的低温热历史: 以柴达木盆地北缘赛什腾山中新生代构造演化为例[J]. 地震地质, 2011, 33(2): 369-382. WAN Jinglin, ZHENG Dewen, ZHENG Wenjun, et al.Modeling thermal history during low temperature by k-feldspar mdd and fission track: Example from Meso-Cenozoic tectonic evolution in Saishitengshan in the northern margin of Qaidam Basin[J]. Seismology and Geology, 2011, 33(2): 369-382. |
|
|
|