|
|
Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu sag, East China Sea Basin |
XU Fanghao1, XU Guosheng1, LIU Yong2, ZHANG Wu3, CUI Hengyuan1, WANG Yiran1 |
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Chengdu 610059, China; 2. No. 4 Gas Production Plant of Sinopec Southwest Oil & Gas Company, Chongqing 402160, China; 3. CNOOC (China) Co., Ltd. Shanghai Branch, Shanghai 200335, China |
|
|
Abstract By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains; the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs; and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal overpressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part; but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.
|
Received: 02 December 2018
|
|
|
|
|
[1] 何将启, 梁世友, 陈拥锋, 等. 东海盆地西湖凹陷新生代构造演化对油气的控制作用: 以平湖组油气响应为例[J]. 石油实验地质, 2008, 30(3): 221-226. HE Jiangqi, LIANG Shiyou, CHEN Yongfeng, et al.Control of Cenozoic tectonic evolution on petroleum in Xihu Sag, East China Sea Basin: Taking the oil and gas response of Pinghu Formation as an example[J]. Petroleum Geology & Experiment, 2008, 30(3): 221-226. [2] 刘金水, 唐健程. 西湖凹陷低渗储层微观孔隙结构与渗流特征及其地质意义: 以HY构造花港组为例[J]. 中国海上油气, 2013, 25(2): 18-23. LIU Jinshui, TANG Jiancheng.Mircoscopic pore texture and percolation features in the low permeability reservoirs and their geological significance in Xihu sag: A case of Huagang Formation in HY structure[J]. China Offshore Oil and Gas, 2013, 25(2): 18-23. [3] 王猛, 杨玉卿, 徐大年, 等. 东海西湖凹陷致密砂岩气压裂改造层优选因素与方法[J]. 海洋石油, 2016, 36(3): 43-48. WANG Meng, YANG Yuqing, XU Danian, et al.Optimization factors and method of fracturing tight sandstone gas layer in Xihu Sag of East China Sea[J]. Offshore Petroleum, 2016, 36(3): 43-48. [4] 杨彩虹, 高兆红, 蒋一鸣, 等. 西湖凹陷平湖斜坡带始新统平湖组碎屑沉积体系再认识[J]. 石油天然气学报, 2013, 35(9): 11-14. YANG Caihong, GAO Zhaohong, JIANG Yiming, et al.Reconsideration of the detrital sedimentary system of the Eocene Pinghu Formation in the Pinghu Slope Belt of the Xihu Depression[J]. Journal of Oil and Gas, 2013, 35(9): 11-14. [5] 赵澄林, 朱筱敏. 沉积岩石学[M]. 3版. 北京: 石油工业出版社, 2001. ZHAO Chenglin, ZHU Xiaomin.Sedimentary petrology[M]. 3rd Edition. Beijing: Petroleum Industry Press, 2001. [6] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980. LIU Baojun.Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980. [7] 全国石油天然气标准化技术委员会. 致密砂岩气地质评价方法: GB/T 30501—2014[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2014. National Technical Committee for Oil and Gas Standardization. Geological evaluating methods for tight sandstone gas: GB/T30501—2014[S]. Beijing: AQSIA, 2014. [8] 金凤鸣, 张凯逊, 王权, 等. 断陷盆地深层优质碎屑岩储集层发育机理: 以渤海湾盆地饶阳凹陷为例[J]. 石油勘探与开发, 2018, 45(2): 247-256. JIN Fengming, ZHANG Kaixun, WANG Quan, et al.Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: A case study of Raoyang Sag in Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2018, 45(2): 247-256. [9] 王海然, 赵红格, 乔建新, 等. 锆石U-Pb同位素测年原理及应用[J]. 地质与资源, 2013, 22(3): 229-232. WANG Hairan, ZHAO Hongge, QIAO Jianxin, et al.Theory and application of Zircon U-Pb isotope dating technique[J]. Geology and Resources, 2013, 22(3): 229-232. [10] 雷开宇, 刘池洋, 张龙, 等. 鄂尔多斯盆地北部中生代中晚期地层碎屑锆石U-Pb定年与物源示踪[J]. 地质学报, 2017, 91(7): 1522-1541. LEI Kaiyu, LIU Chiyang, ZHANG Long, et al.U-Pb dating and provenance tracing of the Late Mesozoic strata in the northern Ordos Basin[J]. Journal of Geology, 2017, 91(7): 1522-1541. [11] 张航川, 徐亚军, 杜远生, 等. 北京周口店太平山南坡晚古生代碎屑锆石U-Pb年代学及其大地构造意义[J]. 地球科学, 2018, 43(6): 2100-2115. ZHANG Hangchuan, XU Yajun, DU Yuansheng, et al.Detrital Zircon geochronology of late Paleozoic strata from southern hillside of Taiping Hill in Zhoukoudian Area, Beijing and their tectonic implications[J]. Earth Science, 2018, 43(6): 2100-2115. [12] WILKINSON M, DARBY D, HASZELDINE R, et al.Secondary porosity generation during deep burial associated with overpressure leak-off, Fulmar Formation, UK Central Graben[J]. AAPG Bulletin, 1997, 81(5): 803-813. [13] OSBORNE M, SWARBRICK R.Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpressure prediction[J]. Marine and Petroleum Geology, 1999, 16: 337-353. [14] 郝芳, 董伟良. 沉积盆地超压系统演化?流体流动与成藏机理[J]. 地球科学进展, 2001, 16(1): 79-85. HAO Fang, DONG Weiliang.Evolution, fluid flow and accumulation mechanism of overpressure system in sedimentary basins[J]. Advances in Earth Science, 2001, 16(1): 79-85. [15] SURDAM R C, CROSSEY L J, HAGEN E S, et al.Organic- inorganic and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23. [16] HEYDARI E, WADE W J.Massive recrystallization of low-mg calcite at high temperatures in hydrocarbon source rocks: Implications for organic acids as factors in diagenesis[J]. AAPG Bulletin, 2002, 86(7): 1285-1303. [17] 郭宏莉, 王大锐. 塔里木油气区砂岩储集层碳酸盐胶结物的同位素组成与成因分析[J]. 石油勘探与开发, 1999, 26(3): 32-34. GUO Hongli, WANG Darui.Isotopic composition and genesis analysis of carbonate cement in sandstone reservoirs of Tarim Oil and Gas Area[J]. Petroleum Exploration and Development, 1999, 26(3): 32-34. [18] KEITH M L, WEBER J N.Carbon and oxygen isotopic composition of mollusk shells from marine and fresh water environment[J]. Geochimica et Cosmochimica Acta, 1964(28): 1757-1786. [19] 吕正祥, 杨相, 卿元华, 等. 川西坳陷中段沙溪庙组砂岩中水-岩-烃作用特征[J]. 石油与天然气地质, 2015, 36(4): 545-554. LYU Zhengxiang, YANG Xiang, QING Yuanhua, et al.Water-rock-hydrocarbon interactions in the Middle Jurassic Shaximiao Formation sandstones western Sichuan[J]. Oil & Gas Geology, 2015, 36(4): 545-554. [20] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展[J]. 地球科学进展, 2018, 33(11): 1112-1129. CHEN Qilin, HUANG Chenggang.Advance in research on reconstruction of reservoirs by sedimentation in sedimentary rocks[J]. Advances in Earth Science, 2018, 33(11): 1112-1129. [21] 王生朗, 任来义, 王英, 等. 盐湖环境成岩作用特征及其对高孔隙带形成的影响[J]. 石油勘探与开发, 2003, 30(5): 47-49. WANG Shenglang, REN Laiyi, WANG Ying, et al.Characteristics of diagenesis saline Iake environment and its effect on high Porosity zones[J]. Petroleum Exploration and Development, 2003, 30(5): 47-49. [22] 唐雁刚, 罗金海, 马玉杰, 等. 库车坳陷下侏罗统碱性成岩环境对储集物性的影响[J]. 新疆石油地质, 2011, 32(4): 356-358. TANG Yangang, LUO Jinhai, MA Yujie, et al.Effect of alkaline diagenetic environment of Lower Jurassic on reservoir property in Kuqa Depression[J]. Xinjiang Petroleum Geology, 2011, 32(4): 356-358. [23] 周瑶琪, 周振柱, 陈勇, 等. 东营凹陷民丰地区深部储层成岩环境变化研究[J]. 地学前缘, 2011, 18(2): 268-276. ZHOU Yaoqi, ZHOU Zhenzhu, CHEN Yong, et al.Research on diagenetic environmental changes of deep reservoir in Minfeng Area, Dongying Sag[J]. Earth Science Frontiers, 2011, 18(2): 268-276. [24] ZHANG C, JIANG Z, ZHANG Y, et al.Reservoir characteristics and its main controlling factors of the Siegenian formation of Devonian in X block, Algeria[J]. Energy Exploration & Exploitation, 2012, 30(5): 727-752. [25] ZHANG P, ZHANG J, XIE J, et al.Deposition and diagenesis of steep-slope glutenite reservoirs: Shengtuo Field, eastern China[J]. Energy Exploration & Exploitation, 2014, 32(3): 483-501. [26] 徐国盛, 徐芳艮, 袁海锋, 等. 西湖凹陷中央反转构造带花港组致密砂岩储层成岩环境演变与孔隙演化[J]. 成都理工大学学报(自然科学版), 2016, 43(4): 385-395. XU Guosheng, XU Fanggen, YUAN Haifeng, et al.Evolution of pore and diagenetic environment for the tight sandstone reservoir of Paleogene Huagang Formation in the central reversal structural belt in Xihu Sag, East China Sea[J]. Journal of Chengdu University of Technology(Natural Science Edition), 2016, 43(4): 385-395. [27] 刘勇, 徐国盛, 曾兵, 等. 东海盆地西湖凹陷花港组储层孔隙演化与油气充注关系[J]. 石油实验地质, 2018, 40(2): 168-176. LIU Yong, XU Guosheng, ZENG Bing, et al.Relationship between porosity evolution and hydrocarbon charging in tight sandstone reservoirs in Oligocene Huagang Formation, Xihu Sag, East China Sea Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 168-176. |
|
|
|