Experimental evaluation of the salt dissolution in inter-salt shale oil reservoirs
YANG Zhengming1,2, LI Ruishan3, LI Haibo1, LUO Yutian1,2, CHEN Ting1,2, GAO Tiening1,2, ZHANG Yapu1
1. Institute of Porous Flow & Fluid Mechanics, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 2. University of Chinese Academy of Sciences, Beijing 100493, China; 3. Research Institute of Exploration and Development, Jianghan Oilfield Company, Wuhan 430223, China
Abstract:By using salt dissolution experiment, imbibition experiment and high temperature and high pressure nuclear magnetic resonance (NMR) on-line test, the evaluation methods for salt dissolution of inter salt shale oil-bearing cores were established, and the effects of salt dissolution on spontaneous imbibition and permeability were analyzed. The intensity of salt dissolution is quantitatively evaluated by comparing the signal quantity and distribution characteristics of T2 spectrum (transverse relaxation time) measured at different times. In salt dissolution experiment, salt in the core is gradually dissolved as the injected water is continuously immersed in the core. The spontaneous imbibition experiment of inter-salt shale oil-bearing core can be divided into three stages: strong imbibition and weak salt dissolution, strong salt dissolution promoting imbibition, and weak salt dissolution and weak imbibition. The salt dissolution in spontaneous imbibition is very obvious, and the salt dissolution contributes more than 60% of recovery. The micro-pore structure in different cross sections or different parts of inter-salt shale oil-bearing core isn’t uniform, and the pore volume, porosity and permeability increase after salt dissolution.
杨正明, 李睿姗, 李海波, 骆雨田, 陈挺, 高铁宁, 张亚蒲. 盐间页岩油储集层盐溶作用岩心实验评价[J]. 石油勘探与开发, 2020, 47(4): 750-755.
YANG Zhengming, LI Ruishan, LI Haibo, LUO Yutian, CHEN Ting, GAO Tiening, ZHANG Yapu. Experimental evaluation of the salt dissolution in inter-salt shale oil reservoirs[J]. Petroleum Exploration and Development, 2020, 47(4): 750-755.
[1] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al.Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. [2] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al.Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. [3] 姜在兴, 张文昭, 梁超, 等. 页岩油储集层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. JIANG Zaixing, ZHANG Wenzhao, LIANG Chao, et al.Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. [4] 周庆凡, 杨国丰. 美国页岩油气勘探开发现状与发展前景[J]. 国际石油经济, 2018, 26(9): 47-54. ZHOU Qingfan, YANG Guofeng.Status and prospects of shale oil & gas exploration in the United States[J]. International Petroleum Economics, 2018, 26(9): 47-54. [5] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4): 25-30, 64. LIN Senhu, ZOU Caineng, YUAN Xuanjun, et al.Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30, 64. [6] 邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 3-17. ZOU Caineng, ZHU Rukai, BAI Bin, et al.Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 3-17. [7] 刘猛. 美国页岩气革命及其影响研究[D]. 长春: 吉林大学, 2017. LIU Meng.The research on the US shale gas revolution and its impacts[D]. Changchun: Jilin University, 2017. [8] PRAMOD K.Woodford growing revenues by farming to oil shale[J]. World Oil, 2012, 233(1): 32. [9] 赵靖舟, 方朝强, 张洁, 等. 由北美页岩气勘探开发看我国页岩气选区评价[J]. 西安石油大学学报(自然科学版), 2011, 26(2): 1-7, 110. ZHAO Jingzhou, FANG Chaoqiang, ZHANG Jie, et al.Evaluation of China shale gas from the exploration and development of North America shale gas[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2011, 26(2): 1-7, 110. [10] 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019, 46(5): 803-810. JIAO Fangzheng.Re-recognition of “unconventional” in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810. [11] 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256. LU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al.Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256. [12] 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322. LU Shuangfang, XUE Haitao, WANG Min, et al.Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322. [13] 邱振, 卢斌, 施振生, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学, 2016, 27(10): 1817-1827, 1847. QIU Zhen, LU Bin, SHI Zhensheng, et al.Shale oil retention and accumulation mechanism and resource potential of the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2016, 27(10): 1817-1827, 1847. [14] 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545. ZHAO Wenzhi, HU Suyun, HOU Lianhua.Connotation and strategic status of in-situ transformation of shale oil[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. [15] 杨智, 邹才能. “进源找油”: 源岩油气内涵与前景[J]. 石油勘探与开发, 2019, 46(1): 173-184. YANG Zhi, ZOU Caineng.“Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184. [16] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444. LU Shuangfang, LI Junqian, ZHANG Pengfei, et al.Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444. [17] 王力, 陈世加, 丁玉盛, 等. 应用地球化学方法评价断层封闭性: 以苏北盆地金湖凹陷坝田地区为例[J]. 新疆石油地质, 2017, 38(2): 209-214. WANG Li, CHEN Shijia, DING Yusheng, et al.Using geochemical methods to evaluate fault sealing: A case study from Batian Area in Jinhu Sag, Subei Basin[J]. Xinjiang Petroleum Geology, 2017, 38(2): 209-214. [18] 龙玉梅, 陈曼霏, 陈风玲, 等. 潜江凹陷潜江组盐间页岩油储集层发育特征及影响因素[J]. 油气地质与采收率, 2019, 26(1): 59-64. LONG Yumei, CHEN Manfei, CHEN Fengling, et al.Characteristics and influencing factors of inter-salt shale oil reservoirs in Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 59-64. [19] 马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-30. MA Yongsheng, FENG Jianhui, MOU Zehui, et al.Potential and exploration progress of unconventional oil and gas resources in SINOPEC[J]. Engineering Science, 2012, 14(6): 22-30. [20] 李乐, 王自翔, 郑有恒, 等. 江汉盆地潜江凹陷潜三段盐韵律层页岩油富集机理[J]. 地球科学, 2019, 44(3): 1012-1023. LI Le, WANG Zixiang, ZHENG Youheng, et al.Mechanism of shale oil enrichment from the salt cyclotherm in Qian 3 member of Qianjiang sag, Jianghan Basin[J]. Journal of Earth Science, 2019, 44(3): 1012-1023. [21] 吴世强, 唐小山, 杜小娟, 等. 江汉盆地潜江凹陷陆相页岩油地质特征[J]. 东华理工大学学报(自然科学版), 2013, 36(3): 282-286. WU Shiqiang, TANG Xiaoshan, DU Xiaojuan, et al.Geologic characteristics of continental shale oil in the Qianjiang depression, Jianghan salt lake basin[J]. Journal of East China Institute of Technology (Natural Science), 2013, 36(3): 282-286. [22] 王芙蓉, 何生, 郑有恒, 等. 江汉盆地潜江凹陷潜江组盐间页岩油储集层矿物组成与脆性特征研究[J]. 石油实验地质, 2016, 38(2): 211-218. WANG Furong, HE Sheng, ZHENG Youheng, et al.Mineral composition and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Experiment, 2016, 38(2): 211-218. [23] 孙中良, 王芙蓉, 何生, 等. 潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J]. 深圳大学学报理工版, 2019, 36(3): 73-81. SUN Zhongliang, WANG Furong, HE Sheng, et al.The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang Depression[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3): 73-81. [24] 高铁宁. 盐间页岩油储集层微观孔隙结构特征及渗流机理研究[D]. 北京: 中国科学院大学, 2019. GAO Tiening.Characteristics of micropore structure and seepage mechanism of inter-salt shale oil reservoir[D]. Beijing: University of Chinese Academy of Sciences, 2019.