Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China
LI Jun1,2, TANG Yong3, WU Tao3, ZHAO Jingzhou1,2, WU Heyuan1,2, WU Weitao1,2, BAI Yubin1,2
1. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China; 2. Shaanxi Key Lab of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China; 3. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay 834000, China
Abstract:The origin of overpressure and its effect on petroleum accumulation in the large Permian/Triassic conglomerate oil province in the Mahu Sag, Junggar Basin have been investigated based on comprehensive analysis of log curve combinations, loading-unloading curves, acoustic velocity-density cross-plot, and porosity comparison data. The study results show that there are two kinds of normal compaction models in the study area, namely, two-stage linear model and exponent model; overpressure in the large conglomerate reservoirs including Lower Triassic Baikouquan Formation and Permian Upper and Lower Wu’erhe Formations is the result of pressure transfer, and the source of overpressure is the overpressure caused by hydrocarbon generation expansion of Permian Fengcheng Formation major source rock. The petroleum generated by the source rock migrated through faults under the driving of hydrocarbon generation overpressure into the reservoirs to accumulate, forming the Permian and Triassic overpressure oil and gas pools. The occurrence and distribution of overpressure are controlled by the source rock maturity and strike-slip faults connecting the source rock and conglomerate reservoirs formed from Indosinian Movement to Himalayan Movement. As overpressure is the driving force for petroleum migration in the large Mahu oil province, the formation and distribution of petroleum reservoirs above the source rock in this area may have a close relationship with the occurrence of overpressure.
[1] 唐勇, 郭文建, 王霞田, 等. 玛湖凹陷砾岩大油区勘探新突破及启示[J]. 新疆石油地质, 2019, 40(2): 127-137. TANG Yong, GUO Wenjian, WANG Xiatian, et al.A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications[J]. Xinjiang Petroleum Geology, 2019, 40(2): 127-137. [2] 冯冲, 姚爱国, 汪建富, 等. 准噶尔盆地玛湖凹陷异常高压分布和形成机理[J]. 新疆石油地质, 2014, 35(6): 640-645. FENG Chong, YAO Aiguo, WANG Jianfu, et al.Abnormal pressure distribution and formation mechanism in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 640-645. [3] 阿布力米提·依明, 唐勇, 曹剑, 等. 准噶尔盆地玛湖凹陷下三叠统百口泉组源外“连续型”油藏成藏机理与富集规律[J]. 天然气地球科学, 2016, 27(2): 241-250. ABLIMIT Imin, TANG Yong, CAO Jian, et al.Accumulation mechanism and enrichment rules of the continuous hydrocarbon plays in the Lower Triassic Baikouquan Formation of the Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2016, 27(2): 241-250. [4] 支东明. 玛湖凹陷百口泉组准连续型高效油藏的发现与成藏机制[J]. 新疆石油地质, 2016, 37(4): 373-382. ZHI Dongming.Discovery and hydrocarbon accumulation mechanism of quasi-continuous high-efficiency reservoirs of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(4): 373-382. [5] 支东明, 唐勇, 郑孟林, 等. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质, 2018, 39(1): 1-8. ZHI Dongming, TANG Yong, ZHENG Menglin, et al.Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 1-8. [6] 雷德文, 陈刚强, 刘海磊, 等. 准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究[J]. 地质学报, 2017, 91(7): 1604-1619. LEI Dewen, CHEN Gangqiang, LIU Hailei, et al.Study on the forming conditions and exploration fields of the Mahu Giant Oil (Gas) Province, Junggar Basin[J]. Acta Geologica Sinica, 2017, 91(7): 1604-1619. [7] 瞿建华, 杨荣荣, 唐勇. 准噶尔盆地玛湖凹陷三叠系源上砂砾岩扇-断-压三控大面积成藏模式[J]. 地质学报, 2019, 93(4): 915-927. QU Jianhua, YANG Rongrong, TANG Yong.Large-area petroleum accumulation model of the Triassic glutenite reservoirs in the Mahu Sag, Junggar Basin: Triple controls of fan, fault and overpressure[J]. Acta Geologica Sinica, 2019, 93(4): 915-927. [8] XU Z, HU S, WANG L, et al.Seismic sedimentologic study of facies and reservoir in middle Triassic Karamay Formation of the Mahu Sag, Junggar Basin, China[J]. Marine and Petroleum Geology, 2019, 107: 222-236. [9] JIA H, JI H, WANG L, et al.Reservoir quality variations within a conglomeratic fan-delta system in the Mahu Sag, northwestern Junggar Basin: Characteristics and controlling factors[J]. Journal of Petroleum Science and Engineering, 2017, 152: 165-181. [10] 赵文智, 胡素云, 郭绪杰, 等. 油气勘探新理念及其在准噶尔盆地的实践成效[J]. 石油勘探与开发, 2019, 46(5): 1-9. ZHAO Wenzhi, HU Suyun, GUO Xujie, et al.New concepts for deepening hydrocarbon exploration and their application effect in the Junggar Basin[J]. Petroleum Exploration and Development, 2019, 46(5): 1-9. [11] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. ZHAO Jingzhou, LI Jun, XU Zeyang.Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. [12] FERTL W H, TIMKO D H.How down hole temperature, pressure affect drilling, part 3: Overpressure detection from wireline methods[J]. World Oil, 1972, 8: 36-66. [13] FERTL W H.Abnormal formation pressure, implication to exploration, drilling, and production of oil and gas reservoirs[M]. Amsterdam: Elsevier, 1976. [14] HERMANRUD C, WENSASS L, TEIGE G M, et al.Shale porosities from well logs on Haltenbanken (offshore mid-Norway) show no influence of overpressuring[J]. AAPG Memoir, 1998, 70: 65-85. [15] BOWERS G L.Detecting high overpressure[J]. Leading Edge, 2002, 21(2): 174-177. [16] BOWERS G L.Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides under compaction[R]. SPE 27488, 1995. [17] BOWERS G L.Determining an appropriate pore-pressure estimation strategy[R]. OTC 13042, 2001. [18] LAHANN R W, CONOCO D K, HSIEH J C.Influence of clay diagenesis on shale velocities and fluid-pressure[R]. OTC 13021, 2001. [19] CONNER S, SWARBRICK R, LAHANN R.Geologically-driven pore fluid pressure models and their implications for petroleum exploration: Introduction to thematic set[J]. Geofluids, 2011, 11(4): 343-348. [20] TINGAY M R, MORLEY C K, LAIRD A, et al.Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin, 2013, 97(4): 639-672. [21] TEIGE G M, HERMANRUD C, WENSAAS L.The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales[J]. Marine and Petroleum Geology, 1999, 16(4): 321-335. [22] TINGAY M R, SWARBRICK R E, MORLEY C K, et al.Origin of overpressure and pore-pressure prediction in the Baram Province, Brunei[J]. AAPG Bulletin, 2009, 93(1): 51-74. [23] NORDGARD H M, HERMANRUD C, TEIGE G M.Origin of overpressures in shales: Constraints from basin modeling[J]. AAPG Bulletin, 2004, 88(2): 193-211. [24] LAHANN R W, SWARBRICK R E.Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids, 2011, 11(4): 362-375. [25] 赵靖舟. 前陆盆地天然气成藏理论及应用[M]. 北京: 石油工业出版社, 2003. ZHAO Jingzhou.Theory of gas pool-forming in foreland basin and its application[M]. Beijing: Petroleum Industry Press, 2003. [26] YANG R, HE S, LI T, et al.Origin of over-pressure in clastic rocks in Yuanba Area, northeast Sichuan Basin, China[J]. Journal of Natural Gas Science & Engineering, 2016, 30(4): 90-105. [27] TINGAY M R, HILLIS R R, SWARBRICK R E, et al.Vertically transferred overpressures in Brunei: Evidence for a new mechanism for the formation of high-magnitude overpressure[J]. Geology, 2007, 35(11): 1023-1026. [28] 李军, 邹华耀, 张国常, 等. 川东北地区须家河组致密砂岩气藏异常高压成因[J]. 吉林大学学报(地球科学版), 2012, 42(3): 624-633. LI Jun, ZOU Huayao, ZHANG Guochang, et al.Origins of overpressure tight gas reservoirs in the Xujiahe Formation, northeastern Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3): 624-633. [29] FAN C, WANG Z, WANG A.Identification and calculation of transfer overpressure in the northern Qaidam Basin, northwest China[J]. AAPG Bulletin, 2016, 100(1): 23-39. [30] KAENG G C, SAUSAN S, SIMATUPANG Z.Overpressure mechanisms in compressional tectonic Borneo deepwater fold-thrust belt[R]. Jakarta: Indonesian Petroleum Association Fortieth Annual Convention & Exhibition, 2016. [31] 邹华耀, 郝芳, 张伯桥, 等. 库车山前逆冲带超压流体主排放通道对油气成藏的控制[J]. 石油学报, 2005, 26(2): 11-14. ZOU Huayao, HAO Fang, ZHANG Boqiao, et al.Control of main expelling pathway for overpressure fluid on gas migration and accumulation in Kelasu Thrust Belt of Kuche Depression[J]. Acta Petrolei Sinica, 2005, 26(2): 11-14. [32] HAO F, ZHU W L, ZOU H Y, et al.Factors controlling petroleum accumulation and leakage in overpressured reservoirs[J]. AAPG Bulletin, 2015, 99(5): 831-858. [33] GUO X W, HE S, LIU K, et al.Generation and evolution of overpressure caused by hydrocarbon generation in the Jurassic source rocks of the central Junggar Basin, northwestern China[J]. AAPG Bulletin, 2019, 103(7): 1553-1574. [34] TAO K, CAO J, WANG Y, et al.Geochemistry and origin of natural gas in the petroliferous Mahu Sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems[J]. Organic Geochemistry, 2016, 100: 62-79. [35] POWLEY D E.Shale compaction and its relationship to fluid seals[D]. Stillwater, Oklahoma: Oklahoma State University, 1993. [36] HUNT J M, WHELAN J K, EGLINTON L B, et al.Relation of shale porosities, gas generation, and compaction to deep overpressures in the U.S. Gulf Coast[J]. AAPG Memoir, 1998, 70: 87-104. [37] HUNT J M.Petroleum geology and geochemistry[M]. San Francisco: Freeman Company, 1996. [38] 刘福宁, 杨计海, 温伟明. 琼东南盆地地压场与油气运移[J]. 中国海上油气, 1994, 8(2): 363-376. LIU Funing, YANG Jihai, WEN Weiming.Geopressure field and its relation to petroleum migration in Qiongdongnan Basin[J]. China Offshore Oil and Gas, 1994, 8(2): 363-376. [39] 唐勇, 徐洋, 瞿建华, 等. 玛湖凹陷百口泉组扇三角洲群特征及分布[J]. 新疆石油地质, 2014, 35(6): 628-635. TANG Yong, XU Yang, QU Jianhua, et al.Fan delta group characteristics and its distribution of the Triassic Baikouquan Reservoirs in Mahu Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 628-635. [40] LI J, ZHAO J, WEI X, et al.Origin of abnormal pressure in the Upper Paleozoic shale of the Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 110(12): 162-177. [41] YASSIR N, ADDIS M A.Relationships between pore pressure and stress in different tectonic settings[J]. AAPG Memoir, 2002, 76: 79-88. [42] KATAHARA K.Analysis of overpressure on the Gulf of Mexico shelf[R]. OTC 15293, 2003. [43] HOESNI J.Origins of overpressure in the Malay Basin and its influence on petroleum systems[D]. Durham, United Kingdom: University of Durham, 2004. [44] GUO X, HE S, LIU K, et al.Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2010, 94(12): 1859-1881. [45] OPARA A I.Estimation of multiple sources of overpressures using vertical effective stress approach: Case study of the Niger delta, Nigeria[J]. Petroleum & Coal, 2011, 53(4): 302-314. [46] ADEPOJU Y O, EENIOR J O.Unloading mechanism indications in overpressure: A Niger delta example, ASSN Field[R]. Houston: SEG Houston 2013 Annual Meeting, 2013. [47] DASGUPTA S, CHATTERJEE R, PRASAD MOHANTY S.Magnitude, mechanisms, and prediction of abnormal pore pressure using well data in the Krishna-Godavari Basin, east coast of India[J]. AAPG Bulletin , 2016, 100(12): 1833-1855. [48] TINGAY M R, HILLIS R R, MORLEY C K, et al.Variation in vertical stress in the Baram Basin, Brunei: Tectonic and geomechanical implications[J]. Marine & Petroleum Geology, 2003, 20(10): 1201-1212. [49] BOWERS G L, KATSUBE T J.The role of shale pore structure on the sensitivity of wire-line logs to overpressure[J]. AAPG Memoir, 2002, 76: 43-60. [50] COUZENS-SCHULTZ B A, AZBEL K. Predicting pore pressure in active fold-thrust systems: An empirical model for the deepwater Sabah Foldbelt[J]. Journal of Structural Geology, 2014, 69: 465-480. [51] 徐宝荣, 许海涛, 于宝利, 等. 异常地层压力预测技术在准噶尔盆地的应用[J]. 新疆石油地质, 2015, 36(5): 597-601. XU Baorong, XU Haitao, YU Baoli, et al.Application of abnormal formation pressure prediction technologies in Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(5): 597-601. [52] 龚再升. 中国近海大油气田[M]. 北京: 石油工业出版社, 1997. GONG Zaisheng.Giant offshore oil and gas fields in China[M]. Beijing: Petroleum Industry Press, 1997. [53] 张启明, 董伟良. 中国含油气盆地中的超压体系[J]. 石油学报, 2000, 21(6): 2-11. ZHANG Qiming, DONG Weiliang.Overpressure system of hydrocarbon- bearing basins in China[J]. Acta Petrolei Sinica, 2000, 21(6): 2-11. [54] 陈永波, 程晓敢, 张寒, 等. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用[J]. 石油勘探与开发, 2018, 45(6): 985-994. CHEN Yongbo, CHENG Xiaogan, ZHANG Han, et al.Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 985-994. [55] 雷德文, 阿布力米提·依明, 秦志军, 等. 准噶尔盆地玛湖凹陷碱湖轻质油气成因与分布[M]. 北京: 科学出版社, 2016. LEI Dewen, ABLIMIT Iming, QIN Zhijun, et al.Origin and occurrence of the alkaline light oil and gas in the Mahu Sag, Junggar Basin[M]. Beijing: Science Press, 2016.