Abstract:Weiyuan shale gas play is characterized by thin high-quality reservoir thickness, big horizontal stress difference, and big productivity differences between wells. Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells, a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells, high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells, the dominating factors on horizontal well productivity were found out, and optimized development strategies were proposed. The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity. In other words, the shale gas well productivity is controlled by the thickness of the high-quality reservoir, the high-quality reservoir drilling length and the effectiveness of stimulation. Based on the above understanding, the development strategies in Weiyuan shale gas play are optimized as follows: (1) The target of horizontal wells is located in the middle and lower parts of Longyi 11 (Wei202 area) and Longyi 11 (Wei204 area). (2) Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir. (3) A medium to high intensity stimulation is adopted. After the implementation of these strategies, both the production rate and the estimated ultimate recovery (EUR) of individual shale gas wells have increased substantially.
马新华, 李熙喆, 梁峰, 万玉金, 石强, 王永辉, 张晓伟, 车明光, 郭伟, 郭为. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563.
MA Xinhua, LI Xizhe, LIANG Feng, WAN Yujin, SHI Qiang, WANG Yonghui, ZHANG Xiaowei, CHE Mingguang, GUO Wei, GUO Wei. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563.
[1] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. MA Xinhua, XIE Jun.The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. [2] 马新华. 四川盆地天然气发展进入黄金时代[J]. 天然气工业, 2017, 37(2): 1-10. MA Xinhua.A golden era for natural gas development in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(2): 1-10. [3] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. [4] 万玉金, 李熙喆, 卢斌, 等. Fayetteville页岩气开发实践与启示[J]. 天然气地球科学, 2019, 30(11): 1655-1666. WAN Yujin, LI Xizhe, LU Bin, et al.The development of Fayetteville shale play and its implications[J]. Natural Gas Geoscience, 2019, 30(11): 1655-1666. [5] Kimmeridge Energy. Deconstructing the Fayetteville: Lessons from a mature shale play[EB/OL]. (2015-06-25)[2020-01-20]. http://kimmeridge. com/wp-content/uploads/2018/12/Kimmeridge-Deconstructing-the-Fayetteville.pdf. [6] SHEFFER G.The Fayetteville shale[R]. Spring, Texas: Southwestern Energy, 2014. [7] GÜLEN G, IKANNIKOVA S, BROWING J, et al. Fayetteville shale-production outlook[J]. SPE Economics & Management, 2014, 7(2): 47-59. [8] HUGHES J D.The “shale revolution”: Myths and realities[R]. Toronto, Ontario: Post Carbon Institute, 2013. [9] LOUCKS R G, RUPPEL S C.Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. [10] WANG G, CARR T R.Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin[J]. AAPG Bulletin, 2013, 97(12): 2173-2205. [11] HAMMES U, HAMLIN H S, EWING T E.Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana[J]. AAPG Bulletin, 2011, 95(10): 1643-1666. [12] HAMMES U, FRÉBOURG G. Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA[J]. Marine and Petroleum Geology, 2012, 31(1): 8-26. [13] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China: Characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. [14] 谢军, 赵圣贤, 石学文, 等. 四川盆地页岩气水平井高产的地质主控因素[J]. 天然气工业, 2017, 37(7): 1-12. XIE Jun, ZHAO Shengxian, SHI Xuewen, et al.Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(7): 1-12. [15] 董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36(1): 19-32. DONG Dazhong, WANG Yuman, LI Xinjing, et al.Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32. [16] 梁峰, 拜文华, 邹才能, 等. 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发, 2016, 43(3): 350-358. LIANG Feng, BAI Wenhua, ZOU Caineng, et al.Shale gas enrichment pattern and exploration significance of Well WuXi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(3): 350-358. [17] 梁兴, 王高成, 徐政语, 等. 中国南方海相复杂山地页岩气储层甜点综合评价技术: 以昭通国家级页岩气示范区为例[J]. 天然气工业, 2016, 36(1): 33-42. LIANG Xing, WANG Gaocheng, XU Zhengyu, et al.Comprehensive evaluation technology for shale gas sweet spots in the complex marine mountains, South China: A case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 2016, 36(1): 33-42. [18] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37. GUO Xusheng, HU Dongfeng, WEI Zhihong, et al.Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. [19] 王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35(3): 12-21. WANG Yuman, DONG Dazhong, LI Xinjing, et al.Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 12-21. [20] 李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12): 1470-1483. LI Yanfang, SHAO Deyong, LYU Haigang, et al.A relationship between elemental Geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation—Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483. [21] 中华人民共和国国土资源部. 页岩气资源/储量计算与评价技术规范: DZ/T 0254—2014[S]. 北京: 中国标准出版社, 2014. Ministry of Land and Resources of the People’s Republic of China. Regulation of shale gas resources/reserves estimation: DZ/T 0254— 2014[S]. Beijing: Standards Press of China, 2014. [22] 陈曼霏, 何生, 易积正, 等. 涪陵页岩气田平桥区块页岩气储层有机质孔发育特征[J]. 石油学报, 2019, 40(4): 423-433. CHEN Manfei, HE Sheng, YI Jizheng, et al.Development characteristics of organic pore in shale gas reservoir of Wufeng Formation-Member 1 of Longmaxi Formation in Pingqiao block, Fuling shale gas field[J]. Acta Petrolei Sinica, 2019, 40(4): 423-433. [23] LIANG Feng, ZHANG Qin, CUI Huiying, et al.Controlling factors of organic nanopore development: A case study on marine shale in the middle and upper regions, South China[J]. Acta Geologica Sinica (English Edition), 2019, 93(4): 1047-1059. [24] 赵金洲, 任岚, 胡永全. 页岩储层压裂缝成网延伸的受控因素分析[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 1-9. ZHAO Jinzhou, REN Lan, HU Yongquan.Controlling factors of hydraulic fractures extending into network in shale formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 1-9. [25] 王永辉, 刘玉章, 丁云宏, 等. 页岩层理对压裂裂缝垂向扩展机制研究[J]. 钻采工艺, 2017, 40(5): 39-42. WANG Yonghui, LIU Yuzhang, DING Yunhong, et al.Research on influence of shale bedding to vertical extension mechanism of hydraulic fracture[J]. Drilling & Production Technology, 2017, 40(5): 39-42. [26] 曾凡辉, 郭建春, 刘恒, 等. 北美页岩气高效压裂经验及对中国的启示[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 90-98. ZENG Fanhui, GUO Jianchun, LIU Heng, et al.Experience of efficient fracturing of shale gas in north America and enlightenment to China[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6): 90-98.