Abstract:The world’s energy is in the "third major transformation period" from fossil energy to new energy, and all countries in the world have formulated energy development strategies. Through advanced deployment, the United States is about to achieve "energy independence" relying on "unconventional oil and gas revolution". China’s energy development is faced with four challenges: (1) The population base and economic development scale determine the "totally huge amount" of energy consumption; (2) the "coal rich but oil and gas insufficient" resource structure determines the "unclean" energy consuming structure; (3) the increasing dependence on imported oil and gas determines the "unsafe" energy supply; and (4) the unconventional oil and gas endowment makes it impossible to achieve energy independence by copying the American model. From the perspective of the world energy trend and the unique situation of China’s energy, we put forward a "three-step" strategy for China to achieve "energy independence": From 2020 to 2035, "energy supply security" will be addressed by "cleaning coal, stabilizing oil and gas production and vigorously developing new alternative energy"; from 2035 to 2050, the vision of "production independence" will be realized by relying on "domestic production and overseas oil and gas mining rights"; from 2050 to 2100, "intelligent energy and new energy" will help China realize "energy independence". The two important signs of China’s "energy independence" are that domestic production accounts for more than 90% of the domestic consumption and clean energy production accounts for more than 70%, and energy security realizes "independence and self-control" and "long-term security". The strategic significance of "energy independence" is to ensure national energy security, drive the development of relevant major industries, achieve energy management reform, and implement the environmental protection goal of zero carbon emissions. The "energy independence" of China is a strategic mission, it might be fulfilled in the future with the growth of the state’s power, even when the domestic energy production does not catch up with the domestic consumption. Perhaps the world’s new technological revolution will exceed expectations, and China’s "energy independence" dream will eventually come true.
邹才能, 潘松圻, 赵群. 论中国"能源独立"战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426.
ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenge and significance of China’s "energy independence" strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426.
[1] WEEKES-SHACKELFORD V, SHACKELFORD T K, WEEKES- SHACKELFORD V A. Encyclopedia of evolutionary psychological science[M]. Cham: Springer International Publishing, 2016: 1-4.
[2] GALIK K, SENUT B, PICKFORD M, et al.External and internal morphology of the BAR 1002'00 Orrorin tugenensis Femur[J]. Science, 2004, 305(5689): 1450.
[3] SENUT B, PICKFORD M, GOMMERY D, et al.First hominid from the Miocene (Lukeino Formation, Kenya)[J]. Earth and Planetary Science, 2001, 332(2): 137-144.
[4] 邹才能, 潘松圻, 党刘栓. 论能源革命与科技使命[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 1-12.
ZOU Caineng, PAN Songqi, DANG Liushuan.On the energy revolution and the mission of science and technology[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(3): 1-12.
[5] ABELSON P H.Energy independence[J]. Science, 1973, 182(4114): 779.
[6] EIA. Annual energy outlook[R]. Washington D.C.: U.S. Energy Information Administration, 2019.
[7] 王婧. 《2012年英国能源改革法案》翻译项目[D]. 北京: 华北电力大学, 2014.
WANG Jing.Translation project for 2012 UK Energy Reform Bill[D]. Beijing: North China Electric Power University, 2014.
[8] LUETHI D, FLOCH M, BEREITER B, et al.High-resolution carbon dioxide concentration record 650,000-800,000 years before present[J]. Nature, 2008, 453(7193): 379-382.
[9] HARTFIELD G, BLUNDEN J, ARNDT D S.State of the climate in 2017[J]. Bulletin of the American Meteorological Society, 2018, 99(8): 310.
[10] NOAA. Globally averaged marine surface annual mean data[EB/OL]. (2020-02-08)[2020-02-12]. U.S. National Oceanic & Atmospheric Administration. https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data. html.
[11] RIPPLE W J, WOLF C, NEWSOME T M, et al.World scientists’ warning of a climate emergency[J]. BioScience, 2019, 47(3): 23-27.
[12] ALBRIGHT R, CALDEIRA L, HOSFELT J, et al.Reversal of ocean acidification enhances net coral reef calcification[J]. Nature, 2016, 531(7594): 362-365.
[13] HERNDON E M.Permafrost slowly exhales methane[J]. Nature Climate Change, 2018, 8(4): 273-274.
[14] KNOBLAUCH C, BEER C, LIEBNER S, et al.Methane production as key to the greenhouse gas budget of thawing permafrost[J]. Nature Climate Change, 2018, 8(4): 309-312.
[15] ZEMP M, HUSS M, THIBERT E, et al.Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568(7752): 382-386.
[16] MARZEION B, JAROSCH A H, HOFER M.Past and future sea-level change from the surface mass balance of glaciers[J]. The Cryosphere, 2012, 6(6): 1295-1322.
[17] DMI. Greenland ice loss season 2019 starts with a big melt spike[EB/OL]. (2019-06-18)[2020-02-12]. http://polarportal.dk/en/news/ news/greenland-ice-loss-season-2019-starts-with-a-big-melt-spike/.
[18] BP. Statistical review of world energy, 68th edition[R]. London: BP, 2019.
[19] 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12.
ZOU Caineng, PAN Songqi, JING Zhenhua, et al.Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12.
[20] YAO L, GARMASH O, BIANCHI F, et al.Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399): 278.
[21] HUANG R J, ZHANG Y L, BOZZETTI C, et al.High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222.
[22] 油控研究项目课题组. 中国石油消费总量达峰与控制方案研究[R]. 北京: 自然资源保护协会, 2019.
Research Group of China Oil Consumption Cap Plan and and Policy Project. Research on China's oil consumption peak and cap plan[R]. Beijing: Natural Resources Defense Council, 2019.
[23] EIA. International energy outlook 2019 with projections to 2050[R]. Washington D.C.: U.S. Energy Information Administration, 2019.
[24] 国家统计局. 2019年国民经济运行总体情况[EB/OL]. (2020-01-17) [2020-02-12]. http://www.stats.gov.cn/tjsj/zxfb/202001/t20200117_ 1723383.html.
National Bureau of Statistics. National economic operation in 2019[EB/OL]. (2020-01-17)[2020-02-12]. http://www.stats.gov.cn/ tjsj/zxfb/202001/t20200117_1723383.html.
[25] 公安部. 全国私家车保有量首次突破2亿辆[EB/OL]. (2020-01-08) [2020-02-12]. https://www.mps.gov.cn/n2254314/n6409334/c6852472/ content.html.
Ministry of Public Security. Number of vehicles on hand in China[EB/OL]. (2020-01-08)[2020-02-12]. https://www.mps.gov.cn/ n2254314/n6409334/c6852472/content.html.
[26] 国家统计局. 2019年四季度和全年国内生产总值(GDP)初步核算结果[EB/OL]. (2020-01-18)[2020-02-12]. http://www.stats.gov. cn/tjsj/zxfb/202001/t20200117_1723591.html.
National Bureau of Statistics. Gross domestic product (GDP) for China in 2019[EB/OL]. (2020-01-18)[2020-02-12]. http://www.stats. gov.cn/tjsj/zxfb/202001/t20200117_1723591.html.
[27] 中国煤炭工业协会. 2018煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2019.
China National Coal Association. Annual report on coal industry in 2019[R]. Beijing: China National Coal Association, 2019.
[28] 邹才能. 新能源[M]. 北京: 石油工业出版社, 2019: 255.
ZOU Caineng.New Energy[M]. Beijing: Petroleum Industry Press, 2019: 255.
[29] 中国氢能联盟. 2018年中国氢气行业产业链、供应及需求分析[EB/OL]. (2019-07-17)[2020-02-12]. https://www.huaon.com/story/ 447763.
China Hydrogen Alliance. Analysis on China hydrogen development: Industrial chain, supply and demand[EB/OL]. (2019-07-17)[2020- 02-12]. https://www. huaon.com/story/447763.
[30] 杨智, 邹才能. “进源找油”: 源岩油气内涵与前景[J]. 石油勘探与开发, 2019, 46(1): 173-184.
YANG Zhi, ZOU Caineng.“Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 181-193.