Abstract:To make clear about the sedimentary facies types and distribution of deep water sandstone reservoirs in Campos basin of Brazil, this paper researches the characteristics of deep-water sedimentary system in Campos basin through the comprehensive analysis of drilling, logging and seismic data. There are 3 subfacies and 7 microfacies in the study area. There are 3 channels from south to north in Upper Cretaceous Maastrichtian, and the sedimentary incised valley and compound channels developed in micro-salt basin are the main deep water depositional types. The Paleocene to Eocene dominated by sedimentary incised valley and eroded compound channel deposits, also include 3 channel systems. From Oligocene to Miocene, the main deposition type is lobe, which is mainly distributed in central-north of the basin. Corresponding to deep water depositional stages, 3 kinds of depositional models are found. From Turonian to Maastrichtian of Upper Cretaceous, with tectonic uplift, strong source material supply, and the negative topography produced by salt rock movement providing favorable accommodation for sand deposition, the depositional model was terrigenous direct feed mechanism with sedimentary incised valley and compound channels in micro salt basin. From Paleocene to Eocene, as the amplitude of tectonic uplift reached the maximum and the accompanied erosion peaked, accommodation space offered by micro salt basin was leveled up; the depositional model was terrigenous direct feed mechanism with sedimentary valley and incised compound channels. From Oligocene to Miocene, because of sable tectonics, sea level fluctuation is the main controlling factor for deep water deposition, so the depositional model was wide shelf indirect feed mechanism with bypass incised valley and lobe. The analysis of the characteristics and controlling factors of the 3 types deep-water sedimentary systems during 3 different stages in Campos Basin can provide valuable reference for the oil exploration in deep-water deposits in the Campos Basin and across the world.
康洪全, 孟金落, 程涛, 贾怀存, 白博, 李明刚. 巴西坎波斯盆地深水沉积体系特征[J]. 石油勘探与开发, 2018, 45(1): 93-104.
KANG Hongquan, MENG Jinluo, CHENG Tao, JIA Huaicun, BAI Bo, LI Minggang. Characteristics of deep water depositional system in Campos basin, Brazil[J]. Petroleum Exploration and Development, 2018, 45(1): 93-104.
[2] SHANMUGAM G. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models: A critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342. [3] MUTTI E, BERNOULLI D, LUCCHI F R, et al. Turbidites and turbidity currents from Alpine “flysch” to the exploration of continental margins[J]. Sedimentology, 2009, 56(1): 267-318. [4] WALKER R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(5): 932-966. [5] BOUMA A H. Coarse-grained and fine-grained turbidite systems as end member models: Applicability and dangers[J]. Marine and Petroleum Geology, 2000, 17(2): 137-143. [6] SHANMUGAM G. 深水砂体成因研究新进展[J]. 石油勘探与开发, 2013, 40(3): 294-301. SHANMUGAM G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 294-301. [7] WEIMER P, SLATT R M. 深水油气地质导论[M]. 姚根顺, 吕福亮, 范国章, 等, 译. 北京: 石油工业出版社, 2012. WEIMER P, SLATT R M. Introduction to deepwater oil and gas geology[M]. YAO Genshun, LYU Fuliang, FAN Guozhang, et al, Trans. Beijing: Petroleum Industry Press, 2012. [8] BROUCKE O, TEMPLE F, ROUBY D, et al. The role of deformation processes on the geometry of mud-dominated Turbiditic systems, Oligocene and lower-middle Miocene of the Lower Congo basin (West African margin)[J]. Marine and Petroleum Geology, 2004, 21(3): 327-348. [9] MAYALL M, STEWART I. The architecture of Turbidite slope channels[C]//WEIMER P, SLATT R M, COLEMAN J L, et al. Global deep-water reservoirs of the world: 20th Annual Bob F. Perkins Research Conference. Houston: GCSSEPM, 2000: 578-586. [10] WEIMER P, SLATT R M. Petroleum systems of deepwater settings[M]. Tulsa: SEG, 2004. [11] 张文彪, 段太忠, 刘志强, 等. 深水浊积水道多点地质统计模拟: 以安哥拉Plutonio油田为例[J]. 石油勘探与开发, 2016, 43(3): 403-410. ZHANG Wenbiao, DUAN Taizhong, LIU Zhiqiang, et al. Application of multi-point geostatistics in deep-water turbidity channel simulation: A case study of Plutonio oilfield in Angola[J]. Petroleum Exploration and Development, 2016, 43(3): 403-410. [12] 孙海涛, 钟大康, 张思梦. 非洲东西部被动大陆边缘盆地油气分布差异[J]. 石油勘探与开发, 2010, 37(5): 561-567. SUN Haitao, ZHONG Dakang, ZHANG Simeng. Difference in hydrocarbon distribution in passive margin basins of east and west Africa[J]. Petroleum Exploration and Development, 2010, 37(5): 561-567. [13] 孙辉, 唐鹏程, 陈宇航, 等. 东非鲁武马盆地陆坡深水沉积特征及主控因素[J]. 海洋地质与第四系地质, 2016, 36(3): 59-68. SUN Hui, TANG Pengcheng, CHEN Yuhang, et al. Characteristics and controlling factors of deep water deposits on the continental slope of the Rovuma basin, East Africa[J]. Marine Geology&Quaternary Geology, 2016, 36(3): 59-68. [14] 赵晓明, 吴胜和, 刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报, 2012, 33(6): 1049-1058. ZHAO Xiaoming, WU Shenghe, LIU Li. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oil field, Niger Delta basin[J]. Acta Petrolei Sinica, 2012, 33(6): 1049-1058. [15] 于水, 程涛, 陈莹. 尼日尔三角洲盆地深水沉积体系特征[J]. 地球科学——中国地质大学学报, 2012, 37(4): 763-770. YU Shui, CHENG Tao, CHEN Ying. Depositional characteristics of deepwater systems in the Niger Delta basin[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(4): 763-770. [16] 李磊, 闫瑞, 李宁涛, 等. 西非Rio Muni盆地深水水道特征与成因[J]. 现代地质, 2015, 29(1): 80-88. LI Lei, YAN Rui, LI Ningtao, et al. Characteristics and origin of deep-water channels in Rio Muni basin, West Africa[J]. Geoscience, 2015, 29(1): 80-88. [17] 刘新颖. 西非第三系深水扇沉积特征及发育演化规律[J]. 东北石油大学学报, 2013, 37(3): 24-31. LIU Xinying. Depositional characteristics and evolution of the Tertiary deep water fan in West Africa[J]. Journal of Northeast Petroleum University, 2013, 37(3): 24-31. [18] 蔡露露, 刘春成, 吕明, 等. 西非下刚果盆地深水水道发育特征及沉积储层预测[J]. 中国海上油气, 2016, 28(2): 60-70. CAI Lulu, LIU Chuncheng, LYU Ming, et al. The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo basin, West Africa[J]. China Offshore Oil and Gas, 2016, 28(2): 60-70. [19] 赵晓明, 吴胜和, 刘丽. 西非陆坡区深水复合水道沉积构型模式[J]. 中国石油大学学报(自然科学版), 2012, 36(6): 1-5. ZHAO Xiaoming, WU Shenghe, LIU Li. Sedimentary architecture model of deep-water channel complexes in slope area of West Africa[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 1-5. [20] 王振奇, 肖杰, 龙长俊, 等. 下刚果盆地A区块中新统深水水道沉积特征[J]. 海洋地质前沿, 2013, 29(3): 5-11. WANG Zhenqi, XIAO Jie, LONG Changjun, et al. Depositional characteristics of Miocene deepwater channel deposits in block A of Lower Congo Basin[J]. Marine Geology Frontiers, 2013, 29(3): 5-11. [21] 康洪全, 程涛, 李明刚, 等. 巴西桑托斯盆地油气成藏特征及主控因素分析[J]. 中国海上油气, 2016, 28(4): 1-8. KANG Hongquan, CHENG Tao, LI Minggang, et al. Characteristics and main control factors of hydrocarbon accumulation in Santos basin, Brazil[J]. China Offshore Oil and Gas, 2016, 28(4): 1-8. [22] Wood Mackenzie. Wood Mackenzie[EB/OL]. (2016-01-05) [2017-07-20]. http://www.woodmac.com/public/home. [23] 陶崇智, 邓超, 白国平, 等. 巴西坎波斯盆地和桑托斯盆地油气分布差异及主控因素[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1753-1761. TAO Chongzhi, DENG Chao, BAI Guoping, et al. A comparison study of Brazilian Campos and Santos basins: Hydrocarbon distribution differences and control factors[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1753-1761. [24] 马中振, 谢寅符, 耿长波. 巴西坎波斯盆地石油地质特征与勘探有利区分析[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1389-1396. MA Zhongzhen, XIE Yinfu, GENG Changbo, et al. Petroleum geology and analysis on favorable exploration targets of Campos basin, Brazil[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1389-1396. [25] 张金虎, 金春爽, 祁昭林, 等. 巴西深水含油气盆地石油地质特征及勘探方向[J]. 海洋地质前沿, 2016, 32(6): 23-31. ZHANG Jinhu, JIN Chunshuang, QI Zhaolin, et al. Petroleum geology and future exploration in deep-water basin of Brazil[J]. Marine Geology Frontiers, 2016, 32(6): 23-31. [26] 温志新, 童晓光, 张光亚, 等. 巴西被动大陆边缘盆地群大油气田形成条件[J]. 西南石油大学学报(自然科学版), 2012, 34(5): 1-9. WEN Zhixin, TONG Xiaoguang, ZHANG Guangya, et al. Build up conditions of basin group large oil gas field of passive continental margin of Brazil offshore[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(5): 1-9. [27] 袁圣强, 吴时国, 马玉波. 南大西洋深水盆地构造沉积演化及含油气系统[J]. 天然气地球科学, 2008, 19(2): 216-221. YUAN Shengqiang, WU Shiguo, MA Yubo, et al. Tectono- sedimentary evolution and petroleum systems of the deepwater basin along south Atlantic ocean margin[J]. Natural Gas Geoscience, 2008, 19(2): 216-221. [28] 熊利平, 邬长武, 郭永强, 等. 巴西海上坎波斯与桑托斯盆地油气成藏特征对比研究[J]. 石油实验地质, 2013, 35(4): 419-425. XIONG Liping, WU Changwu, GUO Yongqiang, et al. Petroleum accumulation characteristics in Campos and Santos basins, offshore Brazil[J]. Petroleum Geology & Experiment, 2013, 35(4): 419-425. [29] BRUHN C, WALKER R. High-resolution stratigraphy and sedimentary evolution of coarse grained canyon-filling turbidites from the Upper Cretaceous transgressive megasequence, Campos Basin, offshore Brazil[J]. Journal of Sedimentary Research, 1995, 65(4b): 426-442. [30] HORSCHUTZ P M C, De FREITAS L C S, STANK C V, et al. The Linguado, Carapeba, Vermelho and Marimba giant oil fields, Campos Basin, offshore Brazil[C]//HALBOUTY M T. Giant oil and gas fields of the decade 1978-1988. Tulsa: American Association of Petroleum Geologists, 1992. [31] FETTER M, ROS L F D, BRUHN C H L. Petrographic and seismic evidence for the depositional setting of giant turbidite reservoirs and the paleogeographic evolution of Campos Basin, offshore Brazil[J]. Marine and Petroleum Geology, 2009, 26(6): 824-853.