Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China
WANG Xiaomei1, 2, ZHANG Shuichang1, 2, WANG Huajian1, 2, SU Jin1, 2, HE Kun1, 2, WANG Yu1, 2, WANG Xiaoqi2
1. Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation, Beijing 100083, China; 2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
Abstract:Taking Mesoproterozoic Xiamaling Formation, Northern China as an example, the heterogeneities of source rock in different scales and hydrocarbon microscopic occurrence are studied based on observation of outcrops and observation with microscopy, and geochemical analysis. The large scale heterogeneities of source rocks are considered to be controlled by the plate movement and paleo-latitude location, while the micro-scale might be controlled by climate changes driven by the astronomical orbit. The constant existence of heterogeneities includes the differences of organic matter, debris sources and porosities. The heterogeneities of source rock should be seriously treated during the evaluation of oil and gas resources, especially the unconventional oil and gas. This kind of heterogeneous source rocks provides excellent source-reservoir assemblage of oil and gas generation, expulsion and accumulation, and new reference indexes for the economic evaluation of unconventional oil and gas. Therefore, quantitative study of the heterogeneity of source rock is of great significance for investigating formation mechanism and resource estimation of unconventional oil and gas.
王晓梅, 张水昌, 王华建, 苏劲, 何坤, 王宇, 王晓琦. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例[J]. 石油勘探与开发, 2017, 44(1): 32-39.
WANG Xiaomei, ZHANG Shuichang, WANG Huajian, SU Jin, HE Kun, WANG Yu, WANG Xiaoqi. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China. Petroleum Exploration and Development, 2017, 44(1): 32-39.
[1] TISSOT B P, WELTE D H. Petroleum formation and occurrence: A new approach to oil and gas exploration[M]. New York: Springer- Verlag, 1978. [2] BOWKER K A. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533. [3] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. [4] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. [5] GROSJEAN E, LOVE G, STALVIES C, et al. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin[J]. Organic Geochemistry, 2009, 40(1): 87-110. [6] CRAIG J, THUROW J, THUSU B, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa[J]. Geological Society London Special Publications, 2009, 326(1): 1-25. [7] BHAT G M, CRAIG J, HAFIZ M, et al. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: An introduction[J]. Geological Society London Special Publications, 2012, 366(1): 1-17. [8] CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40(1): 1-47. [9] WAGNER T, HOFMANN P, FLÖGEL S. Marine black shale deposition and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic Ocean[J]. Marine and Petroleum Geology, 2013, 43: 222-238. [10] ZHANG S C, WANG X M, WANG H J, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences, 2016, 113(7): 1731-1736. [11] ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 1406-1413. [12] WU H C, ZHANG S H, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the late Permian[J]. Nature Communications, 2013, 4(9): 2452-2459. [13] RUHL M, DEENEN M, ABELS H, et al. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK)[J]. Earth and Planetary Science Letters, 2010, 295(1): 262-276. [14] BECKMANN B, FLOGEL S, HOFMANN P, et al. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response[J]. Nature, 2005, 437(7056): 241-244. [15] TRABUCHOALEXANDRE J, HAY W W, BOER P L. Phanerozoic environments of black shale deposition and the Wilson Cycle[J]. Solid Earth and Discussions, 2012, 3(1): 29-42. [16] HOFMANN P, WAGNER T. ITCZ controls on Late Cretaceous black shale sedimentation in the tropical Atlantic Ocean[J]. Paleoceanography, 2011, 26(4): 4223. [17] CHOUGH S, KIM S, CHUN S. Sandstone/chert and laminated chert/black shale couplets, Cretaceous Uhangri Formation (southwest Korea): Depositional events in alkaline lake environments[J]. Sedimentary Geology, 1996, 104(1): 227-242. [18] 范文博. 华北克拉通中元古代下马岭组地质特征及研究进展: 下马岭组研究百年回眸[J]. 地质论评, 2015, 61(6): 1383-1406. FAN Wenbo. Geological features and research progress of the Mesoproterozoic Xiamaling Formation in the North China Craton: A review after nearly one hundred years of study[J]. Geological Review, 2015, 61(6): 1383-1406. [19] 张水昌, 张宝民, 边立曾, 等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学: 地球科学, 2007, 37(5): 636-643. ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. The Xiamaling oil shale accumulated by rhodophyta over 800 Ma ago[J]. SCIENCE CHINA Earth Sciences, 2007, 50(4): 527-535. [20] 王晓琦, 孙亮, 朱如凯, 等. 利用电子束荷电效应评价致密储集层储集空间: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2015, 42(4): 472-480. WANG Xiaoqi, SUN Liang, ZHU Rukai, et al. Application of charging effects in evaluating storage space of tight reservoirs: A case study from Permian Lucaogou Formation in Jimusar sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 472-480. [21] 陈建平, 梁狄刚, 张水昌, 等. 泥岩/页岩: 中国元古宙—古生代海相沉积盆地主要烃源岩[J]. 地质学报, 2013, 87(7): 905-921. CHEN Jianping, LIANG Digang, ZHANG Shuichang, et al. Shale and mudstone: Essential source rocks in the Proterozoic to Paleozoic marine basins in China[J]. Acta Geologica Sinica, 2013, 87(7): 905-921. [22] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. [23] 宋国奇, 徐兴友, 李政, 等. 济阳坳陷古近系陆相页岩油产量的影响因素[J]. 石油与天然气地质, 2015, 36(3): 463-471. SONG Guoqi, XU Xingyou, LI Zheng, et al. Factors controlling oil production from Paleogene shale in Jiyang depression[J]. Oil and Gas Geology, 2015, 36(3): 463-471. [24] LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. [25] 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. JIANG Zaixing, ZHANG Wenzhao, LIANG Chao, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. [26] 魏威, 王飞宇. 页岩油气资源体系成藏控制因素与储层特征[J]. 地质科技情报, 2014, 33(1): 150-155. WEI Wei, WANG Feiyu. The controlling factors of shale resource system and reservoir characteristics[J]. Geological Science and Technology Information, 2014, 33(1): 150-155. [27] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [28] MARTIN R, BAIHLY J D, MALPANI R, et al. Understanding production from Eagle Ford-Austin Chalk System[R]. SPE145117, 2011.