Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: A case study of Kuqa foreland basin, Western China
WU Hai, ZHAO Mengjun, ZHUO Qingong, LU Xuesong, GUI Lili, LI Weiqiang, XU Zuxin
1. Key Laboratory of Basin Structure and Hydrocarbon Accumulation, CNPC, Beijing 100083, China; 2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 3. School of Geosciences, Yangtze University, Wuhan 430100, China
Abstract:There develop two sets of thick salt in the Kuqa foreland basin, the impact of salt thickness on geothermal temperature and thermal evolution of source rock was analyzed using transient thermal modeling method based on the two dimensional seismic profile from west to east of the basin and the related boundary condition. The results indicate that: (1) the change of salt plies will not have different impact on geothermal temperature when the total thickness of the salt body is constant; (2) the geothermal temperature of formations above the gypsum will increase about 0.3-0.6 ℃/100 m, while the subsalt geothermal temperature will decrease about 0.6-1.0 ℃/100 m in the west of the basin; the geothermal temperature of formations above the salt will increase about 1.9-2.3 ℃/100 m, while the subsalt geothermal temperature will decrease about 0.2-2.6 ℃/100 m in the east of the basin; (3) the value of vitrinite reflectance will be lagged about 0.02%/100 m averagely in the west of the basin, and will be lagged about 0.05%/100 m in the east. As the thermal conductivity of gypsum-salt rock is negatively correlated with temperature, the salt body in the east has a shallower burial and lower geothermal temperature, so its overall thermal conductivity is higher, causing the changing rates of geothermal temperature and Ro are higher than the west. A case study of Dina 2 condensate field of Kuqa foreland basin indicates that the charge time of hydrocarbon there lagged about 7.5-9.0 Ma because of the delayed source rock thermal evolution caused by the salt, matching well with the formation period of trap, which is favorable for the late accumulation of hydrocarbon in this area.
吴海, 赵孟军, 卓勤功, 鲁雪松, 桂丽黎, 李伟强, 徐祖新. 膏盐岩对地层温度及烃源岩热演化的影响定量分析——以塔里木库车前陆盆地为例[J]. 石油勘探与开发, 2016, 43(4): 550-558.
WU Hai, ZHAO Mengjun, ZHUO Qingong, LU Xuesong, GUI Lili, LI Weiqiang, XU Zuxin. Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: A case study of Kuqa foreland basin, Western China[J]. , 2016, 43(4): 550-558.
[1] HALBOUTY M T. Salt domes, gulf region, United States & Mexico[M]. Houston: Gulf Publishing Company, 1979. [2] VOLOZH Y, TALBOT C, ISMAIL-ZADEH A. Salt structures and hydrocarbons in the Pricaspian Basin[J]. AAPG Bulletin, 2003, 87(2): 313-334. [3] YU Y, TANG L, YANG W, et al. Salt structures and hydrocarbon accumulations in the Tarim Basin, northwest China[J]. AAPG Bulletin, 2014, 98(1): 135-159. [4] HAWTOF E M. Results of deep well temperature measurements in Texas[J]. API Production Bulletin, 1930, 205: 62-108. [5] JENSEN P K. Calculations on the thermal conditions around a salt diapir[J]. Geophysical Prospecting, 1983, 31(3): 481-489. [6] JENSEN P K. Analysis of the temperature field around salt diapirs[J]. Geothermics, 1990, 19(3): 273-283. [7] WARREN J K. Evaporites: Sediments, resources and hydrocarbons[M]. Berlin: Springer Science & Business Media, 2006. [8] MELLO U T, KARNER G D, ANDERSON R N. Role of salt in restraining the maturation of subsalt source rocks[J]. Marine and Petroleum Geology, 1995, 12(7): 697-716. [9] 卓勤功, 赵孟军, 李勇, 等. 库车前陆盆地古近系岩盐对烃源岩生气高峰期的迟缓作用及其意义[J]. 天然气地球科学, 2014, 25(12): 1903-1912. ZHUO Qingong, ZHAO Mengjun, LI Yong, et al. The delay of Paleogene evaporate on the gas generation peak of source rocks and its significance in Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2014, 25(12): 1903-1912. [10] BEARDSMORE G R, CULL J P. Crustal heat flow: A guide to measurement and modelling[M]. London: Cambridge University Press, 2001. [11] BLACKWELL D D, STEELE J L. Thermal conductivity of sedimentary rocks: Measurement and significance[M]. New York: Springer, 1989: 13-36. [12] WAPLES D W. Maturity modeling: Thermal indicators, hydrocarbon generation, and oil cracking[C]//AAPG Memoir 60: The petroleum system: From source to trap. Tulsa: AAPG, 1994: 285-285. [13] BJORLYKKE K, EGEBERG P K. Quartz cementation in sedimentary basins[J]. AAPG Bulletin, 1993, 77(9): 1538-1548. [14] WALDERHAUG O. Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthermometry and temperature-history modeling[J]. Journal of Sedimentary Research, 1994a, 64(2): 324-333. [15] WALDERHAUG O. Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf: Evidence from fluid inclusions[J]. Journal of Sedimentary Research, 1994b, 64(2): 311-323. [16] WALDERHAUG O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin, 1996, 80(5): 731-745. [17] CHEN F J, WANG X W, ZHANG G Y. Structures and geodynamics of the Mesozoic and Cenozoic foreland basin in China[J]. Earth Science, 2010, 21: 366-371. [18] CHEN S, TANG L, JIN Z, et al. Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China[J]. Marine and Petroleum Geology, 2004, 21(8): 1027-1042. [19] HENDRIX M S, GRAHAM S A, CARROLL A R, et al. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan Basins, northwest China[J]. Geological Society of America Bulletin, 1992, 104(1): 53-79. [20] GRAHAM S A, HENDRIX M S, WANG L B, et al. Collisional successor basins of western China: Impact of tectonic inheritance on sand composition[J]. Geological Society of America Bulletin, 1993, 105(3): 323-344. [21] 梁狄刚, 张水昌, 赵孟军, 等. 库车拗陷的油气成藏期[J]. 科学通报, 2002, 47(Z1): 56-63. LIANG Digang, ZHANG Shuichang, ZHAO Mengjun, et al. Hydrocarbon sources and stages of reservoir formation in Kuqa depression, Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(Z1): 62-70. [22] 刘景东, 蒋有录, 谈玉明, 等. 渤海湾盆地东濮凹陷膏盐岩与油气的关系[J]. 沉积学报, 2014, 32(1): 126-137. LIU Jingdong, JIANG Youlu, TAN Yuming, et al. Relationship between gypsum-salt rock and oil-gas in Dongpu depression of Bohai Gulf Basin[J]. Acta Sedimentologica Sinica, 2014, 32(1): 126-137. [23] HANTSCHEL T, KAUERAUF A I. Fundamentals of basin and petroleum systems modeling[M]. Berlin: Springer Science & Business Media, 2009. [24] DEMING D. Catastrophic release of heat and fluid flow in the continental crust[J]. Geology, 1992, 20(1): 83-86. [25] ROWAN M G. A systematic technique for the sequential restoration of salt structures[J]. Tectonophysics, 1993, 228(3): 331-348. [26] ROWAN M G, VILLAMIL T, FLEMINGS P B, et al. Use of cross-section restoration to determine paleobathymetry and sea-floor paleotopography in the Gulf of Mexico basin[J]. Geology, 1996, 24(4): 299-302. [27] 王良书, 李成, 刘绍文, 等. 库车前陆盆地大地热流分布特征[J]. 石油勘探与开发, 2005, 32(4): 79-83. WANG Liangshu, LI Cheng, LIU Shaowen, et al. Terrestrial heat flow distribution in Kuqa foreland Basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2005, 32(4): 79-83. [28] 郭仁炳. 库车坳陷地温的状况和特点[J]. 中国西部油气地质, 2006, 2(1): 50-55. GUO Renbing. Geothermal simulation and its characteristics in Kuqa depression[J]. West China Petroleum Geosciences, 2006, 2(1): 50-55. [29] 王良书, 李成, 刘绍文, 等. 塔里木盆地北缘库车前陆盆地地温梯度分布特征[J]. 地球物理学报, 2003, 46(3): 403-407. WANG Liangshu, LI Cheng, LIU Shaowen, et al. Geotemperature gradient distribution of Kuqa foreland basin, North of Tarim, China[J]. Chinese Journal of Geophysics, 2003, 46(3): 403-407. [30] HU S, HE L, WANG J. Heat flow in the continental area of China: A new data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. [31] HUDEC M R, JACKSON M P A. Terra infirma: Understanding salt tectonics[J]. Earth Science Reviews, 2007, 82(1): 1-28. [32] 朱光有, 杨海军, 张斌, 等. 塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制[J]. 岩石学报, 2012, 28(8): 2479-2492. ZHU Guangyou, YANG Haijun, ZHANG Bin, et al. The geological feature and origin of Dina 2 large gas field in Kuqa Depression, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(8): 2479-2492. [33] 吴海, 赵孟军, 周彦臣, 等. 利用显微荧光技术研究库车坳陷迪那2气藏充注史[R]. 大庆: 第八届全国油气运移学术研讨会, 2015. WU Hai, ZHAO Mengjun, ZHOU Yanchen, et al. Applying microscopic fluorescence to unravel the hydrocarbon charge history of Dina2 gas field of Kuqa depression, Western China[R]. Daqing: The 8th National Hydrocarbon Migration Academic Workshop, 2015. [34] 汪新, 贾承造, 杨树锋. 南天山库车冲断褶皱带构造变形时间: 以库车河地区为例[J]. 地质学报, 2002, 76(1): 55-63. WANG Xin, JIA Chengzao, YANG Shufeng. The time of deformation on the Kuqa-and-thrust belt in the southern Tianshan: Based on the Kuqa river area[J]. Acta Geologica Sinica, 2002, 76(1): 55-63. [35] 卢华复, 贾东, 陈楚铭, 等. 库车新生代构造性质和变形时间[J]. 地学前缘, 1999, 6(4): 215-221. LU Huafu, JIA Dong, CHEN Chuming, et al. Nature and timing of the Kuqa Cenozoic structures[J]. Earth Science Frontiers, 1999, 6(4): 215-221.